Chapter 3 Atoms and Molecules Class 9 Important Questions NCERT Science

Q.1

Which of the following are tri-atomic and tetra-atomic molecules? CH₃Cl, CaCl₂, NH₃, PCl₃, P₂O₅, H₂O, C₂H₅OH

Answer:

(i) Tri-atomic molecules are CaCl₂, H₂O.

(ii) Tetra-atomic molecules are NH₃, PCl₃.

Q.2

Differentiate between the actual mass of a molecule and gram molecular mass.

Answer:

Actual mass of a molecule is obtained by dividing the molar mass by Avogadro's number whereas gram molecular mass represents the molecular mass expressed in grams, i.e., it is the mass of 1 mole of molecules, i.e., Avogadro's number of molecules.

Q.3

Calculate the formula mass of sodium carbonate (Na₂CO₃.10H₂O). Answer:

Answer:

Formula mass of sodium carbonate = $(2 \times \text{atomic mass of Na}) + (1 \times \text{atomic mass of C}) + (3 \times \text{atomic mass of O}) + 10 [(2 \times \text{atomic mass of H}) + (1 \times \text{atomic mass of O})]$ = $2 \times 23 + 1 \times 12 + 3 \times 16 + 10 [(2 \times 1) + (1 \times 16)]$ = 46 + 12 + 48 + 180 = 286 u

Q.4

Calculate the mass of one atom of hydrogen atom.

Answer:

1 mole of hydrogen atom = 1 g or 6.022×10^{23} atoms of hydrogen weigh = 1 g Mass of one atom = 16.022×1023 g = 1.66058×10^{-24} g

Q.5

How many moles are present in 4 g of sodium hydroxide? Answer:

Gram molar mass of NaOH = 23 + 16 + 1 = 40 g 40 g of NaOH = 1 mol \therefore lg of NaOH = 140mol \therefore 4 g of NaOH = 140 × 4 mol = 0.1 mol

Q**.6**

A sample of ammonia weighs 3.00 g. What mass of sulphur trioxide contains the same number of molecules as are in 3.00 g ammonia?

Answer:

Number of moles of ammonia in 3.00 g = 3.0017 mol = 0.1764 mol Molecular mass of SO₃ = 1 × 32u + 3 × 16u = 80u 1 mole of SO₃ weighs 80 g \therefore 0.1764 moles weigh = 80 × 0.1764 g = 14.11 g

Q.7

How many (a) molecules (b) hydrogen atoms (c) oxygen atoms are there in 0.5 mol of water?

Answer:

(a) 1 mol of water contains 6.022×10^{23} molecules

∴ 0.5 mol of water contains 6.022×10232 molecules

= 3.011×10^{23} molecules

(b) 1 molecule of water contains 2 atoms of hydrogen

1 mol of water contains $2 \times 6.022 \times 10^{23}$ atoms of hydrogen

 \therefore 0.5 mol of water contains 2×6.022×10232 atoms of hydrogen

= 6.022×10^{23} atoms of hydrogen

(c) 1 molecule of water contains 1 atom of oxygen
1 mol of water contains 6.022 × 10²³ atoms of oxygen
∴ 0.5 mol of water contains 6.022×10232 atoms of oxygen

= 3.011×10^{23} atoms of oxygen

Q.8

How many atoms would be present in a black dot marked on the paper with graphite pencil as a full stop at the end of a sentence. [Given mass of a dot = 10^{-18} g]

Answer:

1 mole of carbon atoms weigh = 12 g Also, 1 mole of carbon atoms = 6.0 2 2 × 10²³ atoms Thus, 12 g of carbon atoms has 6.022×10^{23} atoms. \therefore 10⁻¹⁸ g of carbon will have $6.022 \times 102312 \times 10-18 \times 10^{-18}$ carbon atoms = 5.02 × 10⁴ carbon atoms.

Q 9

Calculate the number of moles present in: (i) 3.011 × 10²³ number of oxygen atoms. (it) 60 g of calcium

[Given that atomic mass of Ca = 40 u, Avogadro No. = 6.022×10^{23}] Answer:

(i) 1 mole of oxygen contains 6.022×10^{23} atoms $\therefore 6.022 \times 10^{23}$ atoms of oxygen = 1 mol 1 atom of oxygen = 16.022×1023 mol $\therefore 3.011 \times 10^{23}$ atoms of oxygen = $1 \times 3.011 \times 10236.022 \times 1023$ mol = 0.5 mol

(ii) Atomic mass of Ca = 40 u40g of calcium = 1 mol60g of calcium = 6040 mol =1.5 mol

Q 10

Calculate the mass per cent of each element of sodium chloride in one mole of it.

Answer:

Molecular mass of NaCl = $(1 \times 23 + 1 \times 35.5)$ u = 58.5 u Atomic mass of sodium = 23 u

> Mass per cent of Na = $\frac{\text{Atomic mass of Na}}{\text{Molecular mass of NaCl}} \times 100$ = $\frac{23}{58.5} \times 100 = 39.32\%$ Mass % of Na = 39.32 %

Atomic mass of chlorine = 35.5 u

Mass % of Cl = $\frac{\text{Atomic mass of Cl}}{\text{Molecular mass of NaCl}} \times 100$ = $\frac{35.5}{58.5} \times 100$ = **60.68** %