Chapter 3 Atoms and Molecules Class 9 Important Questions NCERT Science

Q. 1

Which of the following are tri-atomic and tetra-atomic molecules?
$\mathrm{CH}_{3} \mathrm{Cl}, \mathrm{CaCl}_{2}, \mathrm{NH}_{3}, \mathrm{PCl}_{3}, \mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{H}_{2} \mathrm{O}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
Answer:
(i) Tri-atomic molecules are $\mathrm{CaCl}_{2}, \mathrm{H}_{2} \mathrm{O}$.
(ii) Tetra-atomic molecules are $\mathrm{NH}_{3}, \mathrm{PCl}_{3}$.
Q. 2

Differentiate between the actual mass of a molecule and gram molecular mass.
Answer:
Actual mass of a molecule is obtained by dividing the molar mass by Avogadro's number whereas gram molecular mass represents the molecular mass expressed in grams, i.e., it is the mass of 1 mole of molecules, i.e., Avogadro's number of molecules.

Q. 3

Calculate the formula mass of sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathbf{1 0} \mathrm{H}_{2} \mathrm{O}\right)$.
Answer:
Formula mass of sodium carbonate
$=(2 \times$ atomic mass of Na$)+(1 \times$ atomic mass of C$)+(3 \times$ atomic mass of O$)+10[(2 \times$
atomic mass of H$)+(1 \times$ atomic mass of O$)]$
$=2 \times 23+1 \times 12+3 \times 16+10[(2 \times 1)+(1 \times 16)]$
$=46+12+48+180=286 u$

Q. 4

Calculate the mass of one atom of hydrogen atom.
Answer:
1 mole of hydrogen atom $=1 \mathrm{~g}$
or 6.022×10^{23} atoms of hydrogen weigh $=1 \mathrm{~g}$
Mass of one atom $=16.022 \times 1023 \mathrm{~g}$
$=1.66058 \times 10^{-24} \mathrm{~g}$

Q. 5

How many moles are present in 4 g of sodium hydroxide?
Answer:
Gram molar mass of $\mathrm{NaOH}=23+16+1=40 \mathrm{~g}$
40 g of $\mathrm{NaOH}=1 \mathrm{~mol}$
$\therefore \lg$ of $\mathrm{NaOH}=140 \mathrm{~mol}$
$\therefore 4 \mathrm{~g}$ of $\mathrm{NaOH}=140 \times 4 \mathrm{~mol}=0.1 \mathrm{~mol}$
Q. 6

A sample of ammonia weighs 3.00 g . What mass of sulphur trioxide contains the same number of molecules as are in 3.00 g ammonia?

Answer:

Number of moles of ammonia in $3.00 \mathrm{~g}=3.0017 \mathrm{~mol}$
$=0.1764 \mathrm{~mol}$
Molecular mass of $\mathrm{So}_{3}=1 \times 32 \mathrm{u}+3 \times 16 \mathrm{u}=8 \mathrm{ou}$
1 mole of SO_{3} weighs 8 og
$\therefore 0.1764$ moles weigh $=80 \times 0.1764 \mathrm{~g}$
$=14.11 \mathrm{~g}$

Q. 7

How many (a) molecules (b) hydrogen atoms (c) oxygen atoms are there in 0.5 mol of water?

Answer:
(a) 1 mol of water contains 6.022×10^{23} molecules
$\therefore 0.5 \mathrm{~mol}$ of water contains 6.022×10232 molecules
$=3.011 \times 10^{23}$ molecules
(b) 1 molecule of water contains 2 atoms of hydrogen

1 mol of water contains $2 \times 6.022 \times 10^{23}$ atoms of hydrogen
$\therefore 0.5 \mathrm{~mol}$ of water contains $2 \times 6.022 \times 10232$ atoms of hydrogen
$=6.022 \times 10^{23}$ atoms of hydrogen
(c) 1 molecule of water contains 1 atom of oxygen

1 mol of water contains 6.022×10^{23} atoms of oxygen
$\therefore 0.5 \mathrm{~mol}$ of water contains 6.022×10232 atoms of oxygen
$=3.011 \times 10^{23}$ atoms of oxygen

Q. 8

How many atoms would be present in a black dot marked on the paper with graphite pencil as a full stop at the end of a sentence. [Given mass of a dot = $\left.10^{-18} \mathrm{~g}\right]$

Answer:

1 mole of carbon atoms weigh $=12 \mathrm{~g}$
Also, 1 mole of carbon atoms $=6.022 \times 10^{23}$ atoms
Thus, 12 g of carbon atoms has 6.022×10^{23} atoms.
$\therefore 10^{-18} \mathrm{~g}$ of carbon will have $6.022 \times 102312 \times 10-18 \times 10^{-18}$ carbon atoms
$=5.02 \times 10^{4}$ carbon atoms.
Q 9
Calculate the number of moles present in:
(i) $3.011 \times 10^{\mathbf{2 3}}$ number of oxygen atoms.
(it) 60 g of calcium
[Given that atomic mass of $\mathrm{Ca}=40 \mathrm{u}$, Avogadro No. $=\mathbf{6 . 0 2 2} \times \mathbf{1 0}^{\mathbf{2 3}}$]
Answer:
(i) 1 mole of oxygen contains 6.022×10^{23} atoms
$\therefore 6.022 \times 10^{23}$ atoms of oxygen $=1 \mathrm{~mol}$
1 atom of oxygen $=16.022 \times 1023 \mathrm{~mol}$
$\therefore 3.011 \times 10^{23}$ atoms of oxygen $=1 \times 3.011 \times 10236.022 \times 1023 \mathrm{~mol}$
$=0.5 \mathrm{~mol}$
(ii) Atomic mass of $\mathrm{Ca}=40 \mathrm{u}$

40 g of calcium $=1 \mathrm{~mol}$
60 g of calcium $=6040 \mathrm{~mol}=1.5 \mathrm{~mol}$

Q 10

Calculate the mass per cent of each element of sodium chloride in one mole of it.
Answer:
Molecular mass of $\mathrm{NaCl}=(1 \times 23+1 \times 35.5) \mathrm{u}=58.5 \mathrm{u}$
Atomic mass of sodium $=23 \mathrm{u}$

$$
\begin{aligned}
& \text { Mass per cent of } \mathrm{Na}=\frac{\text { Atomic mass of } \mathrm{Na}}{\text { Molecular mass of } \mathrm{NaCl}} \times 100 \\
& \qquad=\frac{23}{58.5} \times 100=39.32 \% \\
& \text { Mass } \% \text { of } \mathrm{Na}=39.32 \% \\
& \text { Atomic mass of chlorine }=35.5 \mathrm{u}
\end{aligned}
$$

$$
\begin{aligned}
\text { Mass } \% \text { of } \mathrm{Cl} & =\frac{\text { Atomic mass of } \mathrm{Cl}}{\text { Molecular mass of } \mathrm{NaCl}} \times 100 \\
& =\frac{35.5}{58.5} \times 100=\mathbf{6 0 . 6 8} \%
\end{aligned}
$$

