Ch 4 Structure of Atom Class 9 Important Questions **NCERT Science**

Q 1. Name the three sub-atomic particles of an atom.

Answer: The sub-atomic particles of an atom are

Protons \rightarrow Positively charged Electrons \rightarrow Negatively charged Neutrons \rightarrow No charge

Q 2. Helium atom has an atomic mass of 4 u and two protons in its nucleus. How many neutrons does it have?

Answer:

:..

:..

÷

Atomic mass of He = 4u. Atomic mass = No. of protons + No. of neutrons *.*.. 4 = 2 + no. of neutrons. ÷. No. of neutrons = 4 - 2 = 2Helium atom has 2 neutrons.

Q 3. How will you find the valency of chlorine, sulphur and magnesium? **Answer:**

Valency is the combining capacity of an atom of an element. Chlorine. Atomic Number = 17*.*.. Protons = 17, Electrons = 17*.*.. Distribution of electrons = K L M287 Chlorine needs 1 electron to complete its outermost orbit/shell. \therefore Its valency is -1 (gains 1 electron). Sulphur. Atomic number = 16... Protons = 16, Electrons = 16Distribution of electrons = K L M 286 Sulphur needs 2 electrons to complete its outermost shell. \therefore Its valency is -2 (gains 2 electrons) Atomic number = 12 Magnesium, Protons = 12, electrons = 12Distribution of electrons = K L M 282 Magnesium needs to donate 2 electrons from its outermost shell to become stable.

 \therefore Its valency is +2 (donates 2 electrons).

Q4. Compare all the proposed Bohr's models of an atom given in this chapter. Answer:

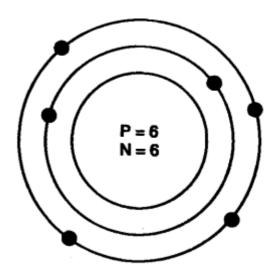
Thomson	Rutherford	Bohr
• Sphere of positive charge	• Sphere of positive charge in centre called nucleus. All mass of an atom resides in the nucleus	 Positive charge in centre called nucleus.
• Electrons are spread randomly all over in the sphere	• Electrons revolve around the nucleus in well defined orbits.	• Electrons revolve in discrete orbits and do not radiate energy.
Positive Sphere	• α-Particles Φ Φ Νucleus Rutherford's Model	• N shell M shell L shell K shell Nucleus Bohr's Model
 Positive charge = Negative charge. Atom is electrically neutral. 	• Size of nucleus is very small as compared to size of atom.	 The orbits were termed as energy shells labelled as K, L, M, N or n=1, 2, 3, 4 (numbered)

Q 5. Explain with examples:

(i) Atomic number (ii) Mass number,

(iii) Isotopes and (iv) Isobars.

Give any two uses of isotopes.


Answer: (i) Atomic number: The atomic number of an element is equal to the number of protons in the nucleus of its atom. e.g., Oxygen has 6 protons hence atomic no. = 6.(ii) Mass number: The mass number of an atom is equal to the number of protons and neutrons in its nucleus.

Nucleons = number of protons + number of neutrons Example: Protons + Neutrons = Nucleus = Mass number 6 + 6 = 12

(iii) Isotopes: Isotopes are atoms of the same element which have different mass number but same atomic number.

(iv) Isobars: Isobars are atoms having the same mass number but different atomic numbers.

Both calcium and argon have same mass number but different atomic number. Two uses of isotopes are:

E.g., ${}^{1}_{1}H$, ${}^{2}_{1}H$, ${}^{3}_{1}H$

(i) An isotope of iodine is used in the treatment of goitre.

(ii) An isotope of uranium is used as a fuel in nuclear reactors.

E.g., ⁴⁰₂₀Ca ⁴⁰₁₈Ar

Q 6. Na⁺ has completely filled K and L shells. Explain.

Answer: Sodium atom (Na), has atomic number =11 Number of protons =11 Number of electrons = 11 Electronic configuration of Na = K L M - 2 8 1Sodium atom (Na) looses 1 electron to become stable and form Na⁺ ion. Hence it has

completely filled K and L shells.

The average atomic mass of a sample of an element X is 16.2 u. What are the percentages of isotopes ${}^{16}{}_{8}X$ and ${}^{18}{}_{8}X$ in the sample?

Answer: Let the percentage of ${}^{16}{}_8X$ be x and the percentage of ${}^{16}{}_8X$ be 100 – x.

$$\therefore \qquad \left(16 \times \frac{x}{100}\right) + \frac{18(100 - x)}{100} = 16.2$$

$$\frac{16x}{100} + \frac{1800 - 18x}{100} = 16.2$$

$$\therefore \qquad \frac{16x - 18x + 1800}{100} = 16.2$$

$$\therefore \qquad -2x + 1800 = 16.2 \times 100$$

$$\therefore \qquad -2x = 1620 - 1800$$

$$\therefore \qquad -2x = -180$$

$$\therefore \qquad x = \frac{180}{2} = 90$$

$$\therefore \qquad 1^{16}_{6}X = 90\%$$
and
$$\frac{^{18}_{8}X}{^{8}_{8}} = 10\%$$

Q 7. Complete the following table.

Atomic Number	Mass Number	Number of Neutrons	Number of Protons	Number of Electrons	Name of the Atomic Species
9	-	10	-	-	_
16	32	-	-	-	Sulphur
-	24	-	12	-	-
-	2	-	1	-	-
-	1	0	1	0	-

Answer:

Atomic Number	Mass Number	Number of Neutrons	Number of Protons	Number of Electrons	Name of the Atomic Species
9	19	10	9	9	Fluorine
16	32	16	16	16	Sulphur
12	24	12	12	12	Magnesium
1	2	1	1	1	Hydrogen D e uterium
1	1	0	1	0	Hydrogen

Q 8. Write the electronic configuration of any one pair of isotopes and isobar.

Answer. Isotopes: Atoms of same element having same atomic number but different mass number.

: Electronic configuration of isotopes remain the same.

E.g.,	12 6	С	$^{14}_{6}C$		
Electronic configuration	K	L		K	L
	2	4		2	4

Isobars: Atoms of different elements with different atomic number but same mass number.

E.g.,	⁴⁰ ₂₀ Ca					⁴⁰ 18 Ar	
Electronic configuration	К	L	М	N	К	L	М
	2	8	8	2	2	8	8

Q 9. What are canal rays?

Answer: Canal rays are positively charged radiations which led to the discovery of positively charged sub-atomic particle called proton.

Q.10 What do you think would be the observation if the a-particle scattering experiment is carried out using a foil of a metal other than gold?

Answer: On using any metal foil, the observations of the a-particle scattering experiment would remain the same as all atoms would have same structure.