Important Questions Class 10 Maths Chapter 14 Probability

Q. 1: Two dice are thrown at the same time. Find the probability of getting
(i) the same number on both dice.
(ii) different numbers on both dice.

Solution:

Given that, Two dice are thrown at the same time.
So, the total number of possible outcomes $n(S)=6^{2}=36$
(i) Getting the same number on both dice:

Let A be the event of getting the same number on both dice.
Possible outcomes are $(1,1),(2,2),(3,3),(4,4),(5,5)$ and $(6,6)$.
Number of possible outcomes $=n(A)=6$
Hence, the required probability $=P(A)=n(A) / n(S)$
$=6 / 36$
$=1 / 6$
(ii) Getting a different number on both dice.

Let B be the event of getting a different number on both dice.
Number of possible outcomes $n(B)=36-$ Number of possible outcomes for the same number on both dice
$=36-6=30$
Hence, the required probability $=\mathrm{P}(\mathrm{B})=\mathrm{n}(\mathrm{B}) / \mathrm{n}(\mathrm{S})$
$=30 / 36$
$=5 / 6$
Q. 2: A bag contains a red ball, a blue ball and a yellow ball, all the balls being of the same size. Kritika takes out a ball from the bag without looking into it. What is the probability that she takes out the

(i) yellow ball?

(ii) red ball?
(iii) blue ball?

Solution:

Kritika takes out a ball from the bag without looking into it. So, it is equally likely that she takes out any one of them from the bag.

Let Y be the event 'the ball taken out is yellow', B be the event 'the ball taken out is blue', and R be the event 'the ball taken out is red'.

The number of possible outcomes $=$ Number of balls in the bag $=n(S)=3$.
(i) The number of outcomes favourable to the event $\mathrm{Y}=\mathrm{n}(\mathrm{Y})=1$.

So, $\mathrm{P}(\mathrm{Y})=\mathrm{n}(\mathrm{Y}) / \mathrm{n}(\mathrm{S})=1 / 3$
Similarly, (ii) $P(R)=1 / 3$
and (iii) $P(B)=1 / 3$

Q.3: One card is drawn from a well-shuffled deck of 52 cards. Calculate the probability that the card will

(i) be an ace,
(ii) not be an ace.

Solution:

Well-shuffling ensures equally likely outcomes.
(i) Card drawn is an ace

There are 4 aces in a deck.
Let E be the event 'the card is an ace'.
The number of outcomes favourable to $\mathrm{E}=\mathrm{n}(\mathrm{E})=4$
The number of possible outcomes $=$ Total number of cards $=n(S)=52$
Therefore, $\mathrm{P}(\mathrm{E})=\mathrm{n}(\mathrm{E}) / \mathrm{n}(\mathrm{S})=4 / 52=1 / 13$
(ii) Card drawn is not an ace

Let F be the event 'card drawn is not an ace'.

The number of outcomes favourable to the event $F=n(F)=52-4=48$
Therefore, $\mathrm{P}(\mathrm{F})=\mathrm{n}(\mathrm{F}) / \mathrm{n}(\mathrm{S})=48 / 52=12 / 13$
Q.4: Two dice are numbered $1,2,3,4,5,6$ and $1,1,2,2,3,3$, respectively. They are thrown, and the sum of the numbers on them is noted. Find the probability of getting each sum from 2 to 9 separately.

Solution:

Number of total outcome $=n(S)=36$
(i) Let E_{1} be the event 'getting sum 2'

Favourable outcomes for the event $\mathrm{E}_{1}=\{(1,1),(1,1)\}$
$\mathrm{n}\left(\mathrm{E}_{1}\right)=2$
$\mathrm{P}(\mathrm{E} 1)=\mathrm{n}(\mathrm{E} 1) / \mathrm{n}(\mathrm{S})=2 / 36=1 / 18$
(ii) Let E_{2} be the event 'getting sum 3'

Favourable outcomes for the event $\mathrm{E}_{2}=\{(1,2),(1,2),(2,1),(2,1)\}$
$\mathrm{n}\left(\mathrm{E}_{2}\right)=4$
$\mathrm{P}\left(\mathrm{E}_{2}\right)=\mathrm{n}\left(\mathrm{E}_{2}\right) / \mathrm{n}(\mathrm{S})=4 / 36=1 / 9$
(iii) Let E_{3} be the event 'getting sum 4'

Favourable outcomes for the event $\mathrm{E}_{3}=\{(2,2)(2,2),(3,1),(3,1),(1,3),(1,3)\}$
$\mathrm{n}\left(\mathrm{E}_{3}\right)=6$
$\mathrm{P}\left(\mathrm{E}_{3}\right)=\mathrm{n}\left(\mathrm{E}_{3}\right) / \mathrm{n}(\mathrm{S})=6 / 36=1 / 6$
(iv) Let E_{4} be the event 'getting sum 5 '

Favourable outcomes for the event $\mathrm{E}_{4}=\{(2,3),(2,3),(4,1),(4,1),(3,2),(3,2)\}$
$n\left(E_{4}\right)=6$
$\mathrm{P}\left(\mathrm{E}_{4}\right)=\mathrm{n}\left(\mathrm{E}_{4}\right) / \mathrm{n}(\mathrm{S})=6 / 36=1 / 6$
(v) Let E_{5} be the event 'getting sum 6'

Favourable outcomes for the event $\mathrm{E}_{5}=\{(3,3),(3,3),(4,2),(4,2),(5,1),(5,1)\}$
$n\left(E_{5}\right)=6$
$\mathrm{P}\left(\mathrm{E}_{5}\right)=\mathrm{n}\left(\mathrm{E}_{5}\right) / \mathrm{n}(\mathrm{S})=6 / 36=1 / 6$
(vi) Let E_{6} be the event 'getting sum 7 '

Favourable outcomes for the event $\mathrm{E}_{6}=\{(4,3),(4,3),(5,2),(5,2),(6,1),(6,1)\}$
$n\left(\mathrm{E}_{6}\right)=6$
$\mathrm{P}\left(\mathrm{E}_{6}\right)=\mathrm{n}\left(\mathrm{E}_{6}\right) / \mathrm{n}(\mathrm{S})=6 / 36=1 / 6$
(vii) Let E_{7} be the event 'getting sum 8'

Favourable outcomes for the event $\mathrm{E}_{7}=\{(5,3),(5,3),(6,2),(6,2)\}$
$n\left(\mathrm{E}_{7}\right)=4$
$\mathrm{P}\left(\mathrm{E}_{7}\right)=\mathrm{n}\left(\mathrm{E}_{7}\right) / \mathrm{n}(\mathrm{S})=4 / 36=1 / 9$
(viii) Let E_{8} be the event 'getting sum 9'

Favourable outcomes for the event $\mathrm{E}_{8}=\{(6,3),(6,3)\}$
$n\left(E_{8}\right)=2$
$\mathrm{P}\left(\mathrm{E}_{8}\right)=\mathrm{n}\left(\mathrm{E}_{8}\right) / \mathrm{n}(\mathrm{S})=2 / 36=1 / 18$
Q.5: A coin is tossed two times. Find the probability of getting at most one head.

Solution:

When two coins are tossed, the total no of outcomes $=2^{2}=4$
i.e. (H, H) (H, T), (T, H), (T, T)

Where,
H represents head
T represents the tail
We need at most one head, which means we need one head only otherwise no head.
Possible outcomes $=(H, T),(T, H),(T, T)$
Number of possible outcomes $=3$
Hence, the required probability $=3 / 4$
Q.6: An integer is chosen between o and 100. What is the probability that it is
(i) divisible by 7 ?
(ii) not divisible by 7 ?

Solution:

Number of integers between 0 and $100=n(S)=99$
(i) Let E be the event 'integer divisible by 7 '

Favourable outcomes to the event $\mathrm{E}=7,14,21, \ldots ., 98$
Number of favourable outcomes $=n(E)=14$
Probability $=P(E)=n(E) / n(S)=14 / 99$
(ii) Let F be the event 'integer not divisible by 7 '

Number of favourable outcomes to the event F = 99 - Number of integers divisible by 7 $=99-14=85$

Hence, the required probability $=\mathrm{P}(\mathrm{F})=\mathrm{n}(\mathrm{F}) / \mathrm{n}(\mathrm{S})=85 / 99$
Q. 7: If $P(E)=0.05$, what is the probability of 'not E '?

Solution:

We know that,
$P(E)+P(n o t E)=1$
It is given that, $\mathrm{P}(\mathrm{E})=0.05$
So, $P($ not $E)=1-P(E)$
$\mathrm{P}($ not E$)=1-0.05$
$\therefore \mathrm{P}($ not E$)=0.95$
Q. 8: 12 defective pens are accidentally mixed with 132 good ones. It is not possible to just look at a pen and tell whether or not it is defective. One pen is taken out at random from this lot. Determine the probability that the pen is taken out is a good one.

Solution:

Numbers of pens = Numbers of defective pens + Numbers of good pens
\therefore Total number of pens $=132+12=144$ pens
$\mathrm{P}(\mathrm{E})=$ (Number of favourable outcomes) / (Total number of outcomes)
$\mathrm{P}($ picking a good pen $)=132 / 144=11 / 12=0.916$

Q. 9: A die is thrown twice. What is the probability that

(i) 5 will not come up either time? (ii) 5 will come up at least once?

[Hint: Throwing a die twice and throwing two dice simultaneously are treated as the same experiment]

Solution:

Outcomes are:
$(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)$
$(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)$
$(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)$
$(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)$
$(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)$
$(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)$
So, the total number of outcomes $=6 \times 6=36$
(i) Method 1:

Consider the following events.
$\mathrm{A}=5$ comes in the first throw,
$B=5$ comes in second throw
$P(A)=6 / 36$,
$P(B)=6 / 36$ and
$P(\operatorname{not} B)=5 / 6$
So, $P($ not $A)=1-6 / 36=5 / 6$
\therefore The required probability $=5 / 6 \times 5 / 6=25 / 36$
Method 2:
Let E be the event in which 5 does not come up either time.
So, the favourable outcomes are $[36-(5+6)]=25$
$\therefore \mathrm{P}(\mathrm{E})=25 / 36$
(ii) Number of events when 5 comes at least once $=11(5+6)$
\therefore The required probability $=11 / 36$
Q.10: A die is thrown once. What is the probability of getting a number less than 3 ?

Solution:

Given that a die is thrown once.
Total number of outcomes $=n(S)=6$
i.e. $S=\{1,2,3,4,5,6\}$

Let E be the event of getting a number less than 3 .
$n(E)=$ Number of outcomes favourable to the event $E=2$
Since E $=\{1,2\}$
Hence, the required probability $=P(E)=n(E) / n(S)$
$=2 / 6$
$=1 / 3$
Q.11: If the probability of winning a game is 0.07 , what is the probability of losing it?

Solution:

Given that the probability of winning a game $=0.07$
We know that the events of winning a game and losing the game are complementary events.

Thus, $\mathrm{P}($ winning a game $)+\mathrm{P}($ losing the game $)=1$
So, $\mathrm{P}($ losing the game $)=1-0.07=0.93$
Q.12: The probability of selecting a blue marble at random from a jar that contains only blue, black and green marbles is $\mathbf{1 / 5}$. The probability of selecting a black marble at random from the same jar is $1 / 4$. If the jar contains 11 green marbles, find the total number of marbles in the jar.

Solution:

Given that,
$\mathrm{P}($ selecting a blue marble $)=1 / 5$
$\mathrm{P}($ selecting a black marble $)=1 / 4$

We know that the sum of all probabilities of events associated with a random experiment is equal to 1 .

So, P (selecting a blue marble) +P (selecting a black marble) $+\mathrm{P}($ selecting a green marble $)$ $=1$
$(1 / 5)+(1 / 4)+P($ selecting a green marble $)=1$
$\mathrm{P}($ selecting a green marble $)=1-(1 / 4)-(1 / 5)$
$=(20-5-4) / 20$
$=11 / 20$
$\mathrm{P}($ selecting a green marble $)=$ Number of green marbles/Total number of marbles
$11 / 20=11 /$ Total number of marbles $\{$ since the number of green marbles in the jar $=11\}$
Therefore, the total number of marbles $=20$
Q.13: The probability of selecting a rotten apple randomly from a heap of 900 apples is 0.18 . What is the number of rotten apples in the heap?

Solution:

Given,

Total number of apples in the heap $=n(S)=900$
Let E be the event of selecting a rotten apple from the heap.
Number of outcomes favourable to $\mathrm{E}=\mathrm{n}(\mathrm{E})$
$\mathrm{P}(\mathrm{E})=\mathrm{n}(\mathrm{E}) / \mathrm{n}(\mathrm{S})$
$0.18=n(E) / 900$
$\Rightarrow \mathrm{n}(\mathrm{E})=900 \times 0.18$
$\Rightarrow \mathrm{n}(\mathrm{E})=162$
Therefore, the number of rotten apples in the heap $=162$
Q.14: A bag contains 15 white and some black balls. If the probability of drawing a black ball from the bag is thrice that of drawing a white ball, find the number of black balls in the bag.

Solution:

Given,

Number of white balls $=15$
Let x be the number of black balls.
Total number of balls in the bag $=15+\mathrm{x}$
Also, the probability of drawing a black ball from the bag is thrice that of drawing a white ball.
$\Rightarrow \mathrm{x} /(15+\mathrm{x})=3[15 /(15+\mathrm{x})]$
$\Rightarrow \mathrm{x}=3 \times 15=45$
Hence, the number of black balls in the bag $=45$.

