Important Questions for Class 11 Maths Chapter 10 Conic Sections

Question 1:

Determine the equation of the circle with radius 4 and Centre $(-2,3)$.

Solution:

Given that:
Radius, $\mathrm{r}=4$, and center $(\mathrm{h}, \mathrm{k})=(-2,3)$.
We know that the equation of a circle with centre (h, k) and radius r is given as
$(x-h)^{2}+(y-k)^{2}=r^{2}$
Now, substitute the radius and center values in (1), we get
Therefore, the equation of the circle is
$(x+2)^{2}+(y-3)^{2}=(4)^{2}$
$x^{2}+4 x+4+y^{2}-6 y+9=16$
Now, simplify the above equation, we get:
$x^{2}+y^{2}+4 x-6 y-3=0$
Thus, the equation of a circle with center $(-2,3)$ and radius 4 is $x^{2}+y^{2}+4 x-6 y-3=0$

Question 2:

Compute the centre and radius of the circle $2 \mathrm{x}^{2}+2 \mathrm{y}^{2}-\mathrm{x}=\mathrm{o}$

Solution:

Given that, the circle equation is $2 \mathrm{x}^{2}+2 \mathrm{y}^{2}-\mathrm{x}=0$
This can be written as:
$\Rightarrow\left(2 x^{2}-x\right)+y^{2}=0$
$\Rightarrow 2\left\{\left[\mathrm{x}^{2}-(\mathrm{x} / 2)\right]+\mathrm{y}^{2}\right\}=0$
$\Rightarrow\left\{\mathrm{x}^{2}-2 \mathrm{x}(1 / 4)+(1 / 4)^{2}\right\}+\mathrm{y}^{2}-(1 / 4)^{2}=0$
Now, simplify the above form, we get
$\Rightarrow(\mathrm{x}-(1 / 4))^{2}+(\mathrm{y}-\mathrm{O})^{2}=(1 / 4)^{2}$
The above equation is of the form $(x-h)^{2}+(y-k)^{2}=r^{2}$
Therefore, by comparing the general form and the equation obtained, we can say
$\mathrm{h}=1 / 4, \mathrm{k}=\mathrm{o}$, and $\mathrm{r}=1 / 4$.

Question 3:

Determine the focus coordinates, the axis of the parabola, the equation of the directrix and the latus rectum length for $y^{2}=-8 x$

Solution:

Given that, the parabola equation is $y^{2}=-8 x$.
It is noted that the coefficient of x is negative.
Therefore, the parabola opens towards the left.
Now, compare the equation with $\mathrm{y}^{2}=-4 \mathrm{ax}$, we obtain
$-4 a=-8$
$\Rightarrow \mathrm{a}=2$
Thus, the value of a is 2 .
Therefore, the coordinates of the focus $=(-a, 0)=(-2,0)$
Since the given equation involves y^{2}, the axis of the parabola is the x -axis.
Equation of directrix, $x=$ a i.e., $x=2$
We know the formula to find the length of a latus rectum
Latus rectum length $=4 \mathrm{a}$
Now, substitute $\mathrm{a}=2$, we get
Length of latus rectum $=8$

Question 4:

Determine the foci coordinates, the vertices, the length of the major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\left(x^{2} / 49\right)+\left(y^{2} / 36\right)=1$

Solution:

The given equation is $\left(x^{2} / 49\right)+\left(y^{2} / 36\right)=1$

It can be written as $\left(\mathrm{x}^{2} / 7^{2}\right)+\left(\mathrm{y}^{2} / 6^{2}\right)=1$
It is noticed that the denominator of $\mathrm{x}^{2} / 49$ is greater than the denominator of the $\mathrm{y}^{2} / 36$
On comparing the equation with $\left(\mathrm{x}^{2} / \mathrm{a}^{2}\right)+\left(\mathrm{y}^{2} / \mathrm{b}^{2}\right)=1$, we will get
$\mathrm{a}=7 \mathrm{and} \mathrm{b}=6$
Therefore, $c=\sqrt{ }\left(a^{2}-b^{2}\right)$
Now, substitute the value of a and b
$\Rightarrow \sqrt{ }\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)=\sqrt{ }\left(7^{2}-6^{2}\right)=\sqrt{ }(49-36)$
$\Rightarrow \sqrt{ } 13$
Hence, the foci coordinates are $(\pm \sqrt{ } 13, o)$
Eccentricity, $\mathrm{e}=\mathrm{c} / \mathrm{a}=\sqrt{ } 13 / 7$
Length of the major axis $=2 \mathrm{a}=2(7)=14$
Length of the minor axis $=2 b=2(6)=12$
The coordinates of the vertices are ($\pm 7,0$)
Latus rectum Length $=2 b^{2} / a=2(6)^{2} / 7=2(36) / 7=72 / 7$

Question 5:

Determine the equation for the ellipse that satisfies the given conditions: Centre at (o, o), the major axis on the y-axis and passes through the points $(3,2)$ and $(1,6)$.

Solution:

Centre $=(0, o)$, and major axis that passes through the points $(3,2)$ and $(1,6)$.
We know that the equation of the ellipse will be of the form when the centre is at (0,0) and the major axis is on the y-axis,
$\left(\mathrm{x}^{2} / \mathrm{b}^{2}\right)+\left(\mathrm{y}^{2} / \mathrm{a}^{2}\right)=1$
Here, a is the semi-major axis.
It is given that, the ellipse passes through the points $(3,2)$ and $(1,6)$.
Hence, equation (1) becomes
$\left(9 / b^{2}\right)+\left(4 / a^{2}\right)=1$
$\left(1 / \mathrm{b}^{2}\right)+\left(36 / \mathrm{a}^{2}\right)=1$.

Solving equation (2) and (3), we get
$\mathrm{b}^{2}=10$ and $\mathrm{a}^{2}=40$
Therefore, the equation of the ellipse becomes: $\left(x^{2} / 10\right)+\left(y^{2} / 40\right)=1$

Question 6:

Determine the equation of the hyperbola which satisfies the given conditions: Foci (o, ± 13), the conjugate axis is of length 24 .

Solution:

Given that: Foci $(0, \pm 13)$, Conjugate axis length $=24$
It is noted that the foci are on the y-axis.
Therefore, the equation of the hyperbola is of the form:
$\left(y^{2} / a^{2}\right)-\left(x^{2} / b^{2}\right)=1$
Since the foci are ($0, \pm 13$), we can get
$C=13$
It is given that, the length of the conjugate axis is 24,
It becomes $2 \mathrm{~b}=24$
$b=24 / 2$
$b=12$
And, we know that $\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}$
To find a, substitute the value of b and c in the above equation:

$$
\begin{aligned}
& a^{2}+12^{2}=13^{2} \\
& a^{2}=169-144 \\
& a^{2}=25
\end{aligned}
$$

Now, substitute the value of a and b in equation (1), we get
$\left(y^{2} / 25\right)-\left(x^{2} / 144\right)=1$, which is the required equation of the hyperbola.

