Important Questions for Class 11 Maths Chapter 11 Introduction to Three Dimensional Geometry

Question 1:

Find the equation of the set of points which are equidistant from the points $(1,2,3)$ and (3, 2, -1).

Solution:

Assume that $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ be the point that is equidistant from two points $\mathrm{A}(1,2,3)$ and $\mathrm{B}(3$, $2,-1$).

Thus, we can say that, $\mathrm{PA}=\mathrm{PB}$
Take square on both the sides, we get
$\mathrm{PA}^{2}=\mathrm{PB}^{2}$
It means that,
$(\mathrm{x}-1)^{2}+(\mathrm{y}-2)^{2}+(\mathrm{z}-3)^{2}=(\mathrm{x}-3)^{2}+(\mathrm{y}-2)^{2}+(\mathrm{z}+1)^{2}$
$\Rightarrow x^{2}-2 x+1+y^{2}-4 y+4+z^{2}-6 z+9=x^{2}-6 x+9+y^{2}-4 y+4+z^{2}+2 z+1$
Now, simplify the above equation, we get:

$$
\begin{aligned}
& \Rightarrow-2 x-4 y-6 z+14=-6 x-4 y+2 z+14 \\
& \Rightarrow-2 x-6 z+6 x-2 z=0 \\
& \Rightarrow 4 x-8 z=0 \\
& \Rightarrow x-2 z=0
\end{aligned}
$$

Hence, the required equation for the set of points is $\mathrm{x}-2 \mathrm{z}=0$.

Question 2:

Given that $\mathrm{P}(3,2,-4), \mathrm{Q}(5,4,-6)$ and $\mathrm{R}(9,8,-10)$ are collinear. Find the ratio in which Q
divides PR.

Solution:

Assume that the point $\mathrm{Q}(5,4,-6)$ divides the line segment joining points $\mathrm{P}(3,2,-4)$ and $R(9,8,-10)$ in the ratio k:1.

Therefore, by using the section formula, we can write it as:
$(5,4,-6)=[(k(9)+3) /(k+1),(k(8)+2) /(k+1),(k(-10)-4) /(k+1)]$
$\Rightarrow(9 \mathrm{k}+3) /(\mathrm{k}+1)=5$
Now, bring the L.H.S denominator to the R.H.S and multiply it
$\Rightarrow 9 \mathrm{k}+3=5 \mathrm{k}+5$
Now, simplify the equation to find the value of k .
$\Rightarrow 4 \mathrm{k}=2$
$\Rightarrow \mathrm{k}=2 / 4$
$\Rightarrow \mathrm{k}=1 / 2$
Therefore, the value of k is $1 / 2$.
Hence, the point Q divides PR in the ratio of $1: 2$

Question 3:

Prove that the points: $(0,7,10),(-1,6,6)$ and $(-4,9,6)$ are the vertices of a right-angled triangle

Solution:

Let the given points be $A=(0,7,10), B=(-1,6,6)$, and $C=(-4,9,6)$
Now, find the distance between the points

Finding for AB :

$\mathrm{AB}=\sqrt{ }\left[(-1-0)^{2}+(6-7)^{2}+(6-10)^{2}\right]$
$\mathrm{AB}=\sqrt{ }\left[(-1)^{2}+(-1)^{2}+(-4)^{2}\right]$
$A B=\sqrt{ }(1+1+16)$
$A B=\sqrt{ } 18$
$\mathrm{AB}=3 \sqrt{ } 2$.

Finding for BC:

$\mathrm{BC}=\sqrt{ }\left[(-4+1)^{2}+(9-6)^{2}+(6-6)^{2}\right]$
$\mathrm{BC}=\sqrt{ }\left[(-3)^{2}+(3)^{2}+(-0)^{2}\right]$
$B C=\sqrt{ }(9+9)$
$B C=\sqrt{ } 18$
$B C=3 \sqrt{ } 2$

Finding for CA:

$C A=\sqrt{ }\left[(0+4)^{2}+(7-9)^{2}+(10-6)^{2}\right]$
$\mathrm{CA}=\sqrt{ }\left[(4)^{2}+(-2)^{2}+(4)^{2}\right]$
$C A=\sqrt{ }(16+4+16)$
$C A=\sqrt{ } 36$
$\mathrm{CA}=6$
Now, by Pythagoras theorem,
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
Now, substitute (1),(2), and (3) in (4), we get:
$6^{2}=(3 \sqrt{ } 2)^{2}+(3 \sqrt{ } 2)^{2}$
$36=18+18$
$36=36$
The given points obey the condition of Pythagoras Theorem.
Hence, the given points are the vertices of a right-angled triangle.

Question 4:

Calculate the perpendicular distance of the point $\mathrm{P}(6,7,8)$ from the XY - Plane.
(a)8 (b) 7
(c) 6
(d) None of the above

Solution:

A correct answer is option (A)

Explanation:

Assume that A be the foot of perpendicular drawn from the point $\mathrm{P}(6,7,8)$ to the XY plane and the distance of this foot A from P is the z -coordinate of P , i.e., 8 units Hence, the correct answer is option (a)

Question 5:

If a parallelopiped is formed by planes drawn through the points $(2,3,5)$ and $(5,9,7)$ parallel to the coordinate planes, then find the length of edges of a parallelopiped and the length of the diagonal

Solution:

Let $\mathrm{A}=(2,3,5), \mathrm{B}=(5,9,7)$
To find the length of the edges of a parallelopiped $=5-2,9-3,7-5$ It means that 3, 6, 2.

Now, to find the length of a diagonal $=\sqrt{ }\left(3^{2}+6^{2}+2^{2}\right)$
$=\sqrt{ }(9+36+4)$
$=\sqrt{ } 49$
$=7$
Therefore, the length of a diagonal of a parallelopiped is 7 units.

