Important Questions for Class 11 Maths Chapter 13 Statistics

Question 1:

The variance of the given data $2,4,5,6,8,17$ is 23.33 . Then find the variance for the data $4,8,10,12,16,34$.
(a) 23.23
(b) 25.33 (c)46.66 (d)48.66

Solution:

A correct answer is an option (c)

Explanation:

For the given data: $2,4,5,6,8,17$, the variance is 23.33 .
To find the variance for the data: $4,8,10,12,16,34$
If you notice the data which you have to find the variance, it is the multiple of the given data.

So, multiply the variance of the given data by 2 ,
It means that, $23.33 \times 2=46.66$
Thus, the variance of the data: $4,8,10,12,16,34$ is 46.66

Question 2:

Find the variance and the standard deviation for the following data: 57, 64, 43, 67, 49, 59, 44, 47, 61, 59

Solution:

Given data: 57, 64, 43, 67, 49, 59, 44, 47, 61, 59
To find mean (μ) :
Mean $(\mu)=(57+64+43+67+49+59+44+47+61+59) / 10$
$=550 / 10$
Mean $=55$
To find Variance ($\sigma^{\mathbf{2}}$):

Variance $\left(\sigma^{2}\right)=\left(x_{i}-\mu\right)^{2} / n$
$=\left(2^{2}+9^{2}+12^{2}+12^{2}+6^{2}+4^{2}+6^{2}+4^{2}+11^{2}+8^{2}\right) / 10$
$=662 / 10$
$=66.2$
Therefore, $\operatorname{variance}\left(\sigma^{2}\right)=66.2$

To find standard deviation (σ):

To find the standard deviation, take the square root of variance, we get
Standard Deviation $(\sigma)=\sqrt{ }\left(\sigma^{2}\right)$
$=\sqrt{ } 66.2=8.13$
Therefore, the standard deviation is 8.13

Question 3:

The coefficients of variations for the two distributions are 60 and 70 and its standard deviations are 21 and 16 respectively. Determine its arithmetic mean.

Solution:

Given that,
Coefficient of Variations (C.V of 1st distribution) $=60, \sigma_{1}=21$
Coefficient of Variations (C.V of 2nd distribution) $=70, \sigma_{2}=16$
Let μ_{1} and μ_{2} are the means of the 1st and the 2nd distribution.
We know that the formula to find the arithmetic mean is given as:
Coefficient of Variations(C.V) $=($ Standard Deviation/arithmetic Mean $) \times 100$
Thus, Arithmetic Mean $=($ Standard Deviation/C.V $) \mathbf{x 1 0 0}$
Therefore, the arithmetic mean for the 1st deviation is given by:
$\mu_{1}=\left[\sigma_{1} /(\right.$ c.v of 1st distribution) $]$ x10o
$\mu_{1}=(21 / 60) \times 100$
$\mu_{1}=0.35 \times 100$
$\mu_{1}=35$
Similarly for μ_{2} :
$\mu_{2}=\left[\sigma_{2} /(\right.$ c.v of 2nd distribution) $] \times 100$
$\mu_{2}=(16 / 70) \times 100$
$\mu_{2}=0.2285 \times 100$
$\mu_{2}=22.85$
Therefore, the arithmetic mean for the 1st and the 2nd distributions are 35 and 22.85 respectively.

Question 4:

Find the mean deviation about mean for the following data:

Size (x)	1	3	5	7	9	11	13	15
Frequency (f)	3	3	4	14	7	4	3	4

Solution:

Let mean $=\mu$
The formula to find mean is
$\mu=f_{i} x_{i} / N$
$\mathrm{N}=3+3+4+14+7+4+3+4=42$
$\mu=(3+9+20+98+63+44+39+60) / 42$
$\mu=336 / 42$
$\mu=8$
Now, to find the mean deviation about mean:
The formula is:
$\operatorname{M.D}(\mu)=\mathrm{f}_{\mathrm{i}}\left|\mathrm{x}_{\mathrm{i}}-\mu\right| / \mathrm{N}$
$M \cdot D(\mu)=[3(7)+3(5)+4(3)+14(1)+7(1)+4(3)+3(5)+4(7)] / 42$
$=(21+15+12+14+7+12+15+28) / 42$
$=62 / 21$
$=2.95$
Therefore, the mean deviation about mean for the given data is 2.95

Question 5:

Determine the mean deviation about the median for the following data:

Class	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
Frequency	6	7	15	16	4	2

Solution:

From the given data:

Class	Frequency $\left(\mathbf{f}_{\mathbf{i}}\right)$	Cumulative frequency (c.f)	Midpoints $\left(\mathbf{x}_{\mathbf{i}}\right)$	$\mid \mathbf{x}_{\mathbf{i}}-$ Median \mid	$\mathbf{f}_{\mathbf{i}} \mid \mathbf{x}_{\mathbf{i}}-$ Median \mid
$0-10$	6	6	5	23	138
$10-20$	7	13	15	13	91
$20-30$	15	28	25	3	45
$30-40$	16	44	35	7	112
$40-50$	4	48	45	17	68
$50-60$	2	50	55	27	54
	50				508

From this, it is noticed that the class interval containing 25th item is 20-30. Therefore, the median is 20-30.

We know that the formula for the median is given as:
Median $=1+\{[((\mathrm{N} / 2)-\mathrm{C}) / \mathrm{f}] \times \mathrm{h}\}$
Here $\mathrm{l}=20, \mathrm{f}=15, \mathrm{C}=13, \mathrm{~N}=50$, and $\mathrm{h}=10$
Now substitute these values in the formula, we get:
Median $=20+\{[(25-13) / 15] \times 10\}$
$=20+8$
$=28$
Therefore, median is 28 .
Hence, the mean deviation about the median is given by:
$\mathrm{M} . \mathrm{D}(\mathrm{M})=$
$1 \mathrm{~N} \sum \mathrm{i}=16 \mathrm{fi}|\mathrm{xi}-\mathrm{M}|$
M.D(M) $=(1 / 50) 508$
$M . D(M)=10.16$
Hence, the mean deviation about the median is 10.16.

