Important Questions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Question 1:

Write the given complex number $(1-\mathrm{i})-(-1+\mathrm{i} 6)$ in the form $\mathrm{a}+\mathrm{ib}$

Solution:

Given Complex number: $(1-\mathrm{i})-(-1+\mathrm{i} 6)$
Multiply (-) by the term inside the second bracket ($-1+\mathrm{i} 6$)
$=1-\mathrm{i}+1-\mathrm{i} 6$
$=2-7 \mathrm{i}$, which is of the form $\mathrm{a}+\mathrm{ib}$.

Question 2:

Express the given complex number (-3) in the polar form.

Solution:

Given, complex number is -3 .
Let $r \cos \theta=-3 \ldots(1)$
and $\mathrm{r} \sin \theta=\mathrm{o} . . .(2)$
Squaring and adding (1) and (2), we get
$r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=(-3)^{2}$
Take r^{2} outside from L.H.S, we get
$r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=9$
We know that, $\cos ^{2} \theta+\sin ^{2} \theta=1$, then the above equation becomes,
$r^{2}=9$
$r=3$ (Conventionally, $r>0$)
Now, subsbtitute the value of r in (1) and (2)
$3 \cos \theta=-3$ and $3 \sin \theta=0$
$\cos \theta=-1$ and $\sin \theta=0$

Therefore, $\theta=\pi$
Hence, the polar representation is,
$-3=r \cos \theta+i r \sin \theta$
$3 \cos \pi+3 \sin \pi=3(\cos \pi+i \sin \pi)$
Thus, the required polar form is $3 \cos \pi+3 i \sin \pi=3(\cos \pi+i \sin \pi)$

Question 3:

Solve the given quadratic equation $2 x^{2}+x+1=0$.

Solution:

Given quadratic equation: $2 \mathrm{x}^{2}+\mathrm{x}+1=\mathrm{o}$
Now, compare the given quadratic equation with the general form $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=\mathrm{o}$
On comparing, we get
$\mathrm{a}=2, \mathrm{~b}=1$ and $\mathrm{c}=1$
Therefore, the discriminant of the equation is:
$D=b^{2}-4 a c$
Now, substitute the values in the above formula
$\mathrm{D}=(1)^{2}-4(2)(1)$
D $=1-8$
$D=-7$
Therefore, the required solution for the given quadratic equation is
$x=[-b \pm \sqrt{ } D] / 2 a$
$x=[-1 \pm \sqrt{ }-7] / 2(2)$
We know that, $\sqrt{ }-1=\mathrm{i}$
$x=[-1 \pm \sqrt{ } 7 \mathrm{i}] / 4$
Hence, the solution for the given quadratic equation is $(-1 \pm \sqrt{ } 7 \mathrm{i}) / 4$.

Question 4:

For any two complex numbers z_{1} and z_{2}, show that $\operatorname{Re}\left(\mathrm{z}_{1} \mathrm{z}_{2}\right)=\operatorname{Rez}_{1} \operatorname{Rez}_{2}-\operatorname{Imz}_{1} \operatorname{Imz} z_{2}$

Solution:

Given: z_{1} and z_{2} are the two complex numbers
To prove: $\operatorname{Re}\left(\mathrm{z}_{1} \mathrm{z}_{2}\right)=\operatorname{Rez}_{1} \operatorname{Rez}_{2}-\operatorname{Imz}_{1} \operatorname{Imz}_{2}$
Let $\mathrm{z}_{1}=\mathrm{x}_{1}+\mathrm{in}_{1}$ and $\mathrm{z}_{2}=\mathrm{x}_{2}+\mathrm{iy}_{2}$
Now, $\mathrm{z}_{1} \mathrm{z}_{2}=\left(\mathrm{x}_{1}+\mathrm{iy}_{1}\right)\left(\mathrm{x}_{2}+\mathrm{iy}_{2}\right)$
Now, split the real part and the imaginary part from the above equation:
$\Rightarrow \mathrm{x}_{1}\left(\mathrm{x}_{2}+\mathrm{iy}_{2}\right)+\mathrm{iy}_{1}\left(\mathrm{x}_{2}+\mathrm{iy}_{2}\right)$
Now, multiply the terms:
$=\mathrm{x}_{1} \mathrm{x}_{2}+\mathrm{ix}_{1} \mathrm{y}_{2}+\mathrm{ix}_{2} \mathrm{y}_{1}+\mathrm{i}^{2} \mathrm{y}_{1} \mathrm{y}_{2}$
We know that, $\mathrm{i}^{2}=-1$, then we get
$=\mathrm{x}_{1} \mathrm{x}_{2}+\mathrm{ix} \mathrm{x}_{1} \mathrm{y}_{2}+\mathrm{ix}_{2} \mathrm{y}_{1}-\mathrm{y}_{1} \mathrm{y}_{2}$
Now, again seperate the real and the imaginary part:
$=\left(\mathrm{x}_{1} \mathrm{x}_{2}-\mathrm{y}_{1} \mathrm{y}_{2}\right)+\mathrm{i}\left(\mathrm{x}_{1} \mathrm{y}_{2}+\mathrm{x}_{2} \mathrm{y}_{1}\right)$
From the above equation, take only the real part:
$\Rightarrow \operatorname{Re}\left(\mathrm{z}_{1} \mathrm{z}_{2}\right)=\left(\mathrm{x}_{1} \mathrm{x}_{2}-\mathrm{y}_{1} \mathrm{y}_{2}\right)$
It means that,
$\Rightarrow \operatorname{Re}\left(\mathrm{z}_{1} \mathrm{z}_{2}\right)=\operatorname{Rez}_{1} \operatorname{Rez}_{2}-\operatorname{Imz}_{1} \operatorname{Imz}_{2}$
Hence, the given statement is proved.

Question 5:

Find the modulus of $[(1+i) /(1-i)]-[(1-i) /(1+i)]$

Solution:

Given: $[(1+\mathrm{i}) /(1-\mathrm{i})]-[(1-\mathrm{i}) /(1+\mathrm{i})]$
Simplify the given expression, we get:
$[(1+i) /(1-i)]-[(1-i) /(1+i)]=\left[(1+i)^{2}-(1-i)^{2}\right] /[(1+i)(1-i)]$
$\left.=\left(1+\mathrm{i}^{2}+2 \mathrm{i}-1-\mathrm{i}^{2}+2 \mathrm{i}\right)\right) /\left(1^{2}+1^{2}\right)$
Now, cancel out the terms,
$=4 \mathrm{i} / 2$
$=2 \mathrm{i}$
Now, take the modulus,
$|[(1+\mathrm{i}) /(1-\mathrm{i})]-[(1-\mathrm{i}) /(1+\mathrm{i})]|=|2 \mathrm{i}|=\sqrt{ } 2^{2}=2$
Therefore, the modulus of $[(1+\mathrm{i}) /(1-\mathrm{i})]-[(1-\mathrm{i}) /(1+\mathrm{i})]$ is 2 .

