Important Questions For Class 11 Maths Chapter 6 Permutations and Combinations

Question 1:

Find the 3-digit numbers that can be formed from the given digits: 1, 2, 3, 4 and 5 assuming that
a) digits can be repeated.
b) digits are not allowed to be repeated.

Solution:

a) By the multiplication principle, the number of ways in which three-digit numbers can be formed from the given digits is $5 \times 5 \times 5=125$
b) By the multiplication principle, the number of ways in which three-digit numbers can be formed without repeating the given digits is $5 \times 4 \times 3=60$

Question 2:

A coin is tossed 6 times, and the outcomes are noted. How many possible outcomes can be there?

Solution:

When we toss a coin once, the number of outcomes we get is 2 (Either Head or tail)
So, in each throw, the no. of ways to get a different face will be 2 .
Therefore, by the multiplication principle, the required no. of possible outcomes is
$2 \times 2 \times 2 \times 2 \times 2 \times 2=64$

Question 3:

Evaluate the following
(i) 6 ! (ii) $5!-2$!

Solution:

(i) 6 ! $=1 \times 2 \times 3 \times 4 \times 5 \times 6=720$
(ii) 5 ! $=1 \times 2 \times 3 \times 4 \times 5=120$

As $2!=1 \times 2=2$
Therefore, $5!-2!=120-2=118$.

Question 4:

From a team of 6 students, in how many ways can we choose a captain and vice-captain assuming one person can not hold more than one position?

Solution:

From a team of 6 students, two students are to be chosen in such a way that one student will hold only one position.

Here, the no. of ways of choosing a captain and vice-captain is the permutation of 6 different things taken 2 at a time.

So, ${ }^{6} \mathrm{P}_{2}=6!/(6-2)!=6!/ 4!=30$

Question 5:

How many words, with or without meaning, can be formed using all the letters of the word EQUATION, using each letter exactly once?

Solution:

Number of letters in word EQUATION` $=8$
$\mathrm{n}=8$
If all letters of the word used at a time
$r=8$
Different numbers formed $=\mathrm{nPr}$
$={ }^{8} \mathrm{P}_{8}$
$=8!/(88)!$
$=8!/ 0$!
$=8!/ 1$
$=8$!
$=8 * 7^{*} 6 * 5 * 4 * 3 * 2 * 1$
$=40320$

Question 6:

How many words can be formed each of 2 vowels and 3 consonants from the letters of the given word - DAUGHTER?

Solution:

No. of Vowels in the word - DAUGHTER is 3 .
No. of Consonants in the word Daughter is 5 .
No of ways to select a vowel $={ }^{3} \mathrm{c}_{2}=3!/ 2!(3-2)!=3$
No. of ways to select a consonant $={ }^{5} \mathrm{c}_{3}=5!/ 3!(5-3)!=10$
Now you know that the number of combinations of 3 consonants and 2 vowels $=10 \times 3=$ 30

Total number of words $=30 \times 5!=3600$ ways.

Question 7:

It is needed to seat 5 boys and 4 girls in a row so that the girl gets the even places. How many are such arrangements possible?

Solution:

5 boys and 4 girls are to be seated in a row so that the girl gets the even places.
The 5 boys can be seated in 5 ! Ways.
For each of the arrangements, 4 girls can be seated only at the places which are cross marked to make girls occupy the even places).

B x B x B x B x B
So, the girls can be seated in 4 ! Ways.
Hence, the possible number of arrangements $=4!\times 5!=24 \times 120=2880$

Question 8:

Find the number of 5 -card combinations out of a deck of 52 cards if each selection of 5 cards has exactly one king.

Solution:

Take a deck of 52 cards,
To get exactly one king, 5 -card combinations have to be made. It should be made in such a way that in each selection of 5 cards, or in a deck of 52 cards, there will be 4 kings.

To select 1 king out of 4 kings $={ }^{4} c_{1}$

To select 4 cards out of the remaining 48 cards $={ }^{48} \mathrm{c}_{4}$
To get the needed number of 5 card combination $={ }^{4} c_{1} \times{ }^{48} c_{4}$
$=4 \times 2 \times 47 \mathrm{x} 46 \times 45$
$=778320$ ways.

Question 9:

Find the number of 6 digit numbers that can be formed by using the digits $0,1,3,5,7$, and 9. These digits shall be divisible by 10 , and no digit shall be repeated?

Solution:

The number which has a o in its units place is divisible by 10 .
If we put o in the unit place, \qquad o, there will be as many ways to fill 5 vacant places. ($1,3,5,7,9$)

The five vacant places can be filled in $5!$ ways $=120$.

Question 10:

Evaluate: 10! - 6!

Solution:

$10!=10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1=3628800$
$6!=6 \times 5 \times 4 \times 3 \times 2 \times 1=720$
$10!-6!=3628800-720=3628080$

