Important Questions for Class 11 Maths Chapter 8 Sequences and Series

Question 1:

The sums of n terms of two arithmetic progressions are in the ratio $5 n+4: 9 n+6$. Find the ratio of their $18^{\text {th }}$ terms.

Solution:

Let $\mathrm{a}_{1}, \mathrm{a}_{2}$ and $\mathrm{d}_{1}, \mathrm{~d}_{2}$ be the first term and the common difference of the first and second arithmetic progression respectively.

Then,
(Sum of n terms of the first A.P)/(Sum of n terms of the second A.P $)=(5 n+4) /(9 n+6)$
$\Rightarrow\left[(n / 2)\left[2 \mathrm{a}_{1}+(\mathrm{n}-1) \mathrm{d}_{1}\right]\right] /\left[(\mathrm{n} / 2)\left[2 \mathrm{a}_{2}+(\mathrm{n}-1) \mathrm{d}_{2}\right]\right]=(5 \mathrm{n}+4) /(9 \mathrm{n}+6)$
Cancel out (n/2) both numerator and denominator on L.H.S
$\Rightarrow\left[2 \mathrm{a}_{1}+(\mathrm{n}-1) \mathrm{d}_{1}\right] /\left[2 \mathrm{a}_{2}+(\mathrm{n}-1) \mathrm{d}_{2}\right]=(5 \mathrm{n}+4) /(9 \mathrm{n}+6) \ldots(1)$
Now susbtitute $\mathrm{n}=35$ in equation (1), $\{$ Since $(\mathrm{n}-1) / 2=17\}$
Then equation (1) becomes
$\Rightarrow\left[2 \mathrm{a}_{1}+34 \mathrm{~d}_{1}\right] /\left[2 \mathrm{a}_{2}+34 \mathrm{~d}_{2}\right]=(5(35)+4) /(9(35+6)$
$\Rightarrow\left[\mathrm{a}_{1}+17 \mathrm{~d}_{1}\right] /\left[\mathrm{a}_{2}+17 \mathrm{~d}_{2}\right]=179 / 321 \ldots(2)$
Now, we can say that.
18th term of first AP/ 18th term of second AP $=\left[a_{1}+17 d_{1}\right] /\left[a_{2}+17 d_{2}\right] \ldots$...3)
Now, from (2) and (3), we can say that,
18 th term of first $\mathrm{AP} / 18$ th term of second $\mathrm{AP}=179 / 321$
Hence, the ratio of the 18th terms of both the AP's is 179:321.

Question 2:

Insert five numbers between 8 and 26 such that resulting sequence is an A.P.

Solution:

Assume that $A_{1}, A_{2}, A_{3}, A_{4}$, and A_{5} are the five numbers between 8 and 26 , such that the sequence of an A.P becomes $8, \mathrm{~A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}, \mathrm{~A}_{5}, 26$

Here, $a=8, l=26, n=5$
Therefore, $26=8+(7-1) \mathrm{d}$
Hence it becomes,
$26=8+6 d$
$6 \mathrm{~d}=26-8=18$
$6 d=18$
$d=3$
$\mathrm{A}_{1}=\mathrm{a}+\mathrm{d}=8+3=11$
$\mathrm{A}_{2}=\mathrm{a}+2 \mathrm{~d}=8+2(3)=8+6=14$
$\mathrm{A}_{3}=\mathrm{a}+3 \mathrm{~d}=8+3(3)=8+9=17$
$\mathrm{A}_{4}=\mathrm{a}+4 \mathrm{~d}=8+4(3)=8+12=20$
$A_{5}=a+5 d=8+5(3)=8+15=23$
Hence, the required five numbers between the number 8 and 26 are 11, 14, 17, 20, 23 .

Question 3:

The 5th, 8th, and 11th terms of a GP are p, q and s respectively. Prove that $\mathrm{q}^{2}=\mathrm{ps}$

Solution:

Given that:
5th term $=\mathrm{P}$
8th term = q
11th term $=\mathrm{s}$
To prove that: $\mathrm{q}^{2}=\mathrm{ps}$
By using the above information, we can write the equation as:
$\mathrm{a}_{5}=\mathrm{ar}^{5-1}=\mathrm{ar}^{4}=\mathrm{p}$
$\mathrm{a}_{8}=\operatorname{ar}^{8-1}=\mathrm{ar}^{7}=\mathrm{q}$
$\mathrm{a}_{11}=\operatorname{ar}^{11-1}=\operatorname{ar}^{10}=\mathrm{s}$

Divide the equation (2) by (1), we get
$\mathrm{r}^{3}=\mathrm{q} / \mathrm{p} \ldots$ (4)
Divide the equation (3) by (2), we get
$\mathrm{r}^{3}=\mathrm{s} / \mathrm{q} \ldots$ (5)
Now, equate the equation (4) and (5), we get
$\mathrm{q} / \mathrm{p}=\mathrm{s} / \mathrm{q}$
It becomes, $q^{2}=p s$
Hence proved.

Question 4:

Show that the sum of $(m+n)^{\text {th }}$ and $(m-n)^{\text {th }}$ terms of an A.P. is equal to twice the $m^{\text {th }}$ term.

Solution:

Let a and d be the first term and the common difference of the A.P. respectively. It is known
that the $\mathrm{k}^{\text {th }}$ term of an A.P. is given by
$\mathrm{a}_{\mathrm{k}}=\mathrm{a}+(\mathrm{k}-1) \mathrm{d}$
Therefore, $\mathrm{a}_{\mathrm{m}+\mathrm{n}}=\mathrm{a}+(\mathrm{m}+\mathrm{n}-1) \mathrm{d}$
$\mathrm{a}_{\mathrm{m}-\mathrm{n}}=\mathrm{a}+(\mathrm{m}-\mathrm{n}-1) \mathrm{d}$
$\mathrm{a}_{\mathrm{m}}=\mathrm{a}+(\mathrm{m}-1) \mathrm{d}$
Hence, the sum of $(m+n)^{\text {th }}$ and $(m-n)^{\text {th }}$ terms of an A.P is written as:

$$
\begin{aligned}
& a_{m+n}+a_{m-n}=a+(m+n-1) d+a+(m-n-1) d \\
& =2 a+(m+n-1+m-n-1) d \\
& =2 a+(2 m-2) d \\
& =2 a+2(m-1) d \\
& =2[a+(m-1) d] \\
& =2 a_{m}\left[\text { since } a_{m}=a+(m-1) d\right]
\end{aligned}
$$

Therefore, the sum of $(m+n)^{\text {th }}$ and $(m-n)^{\text {th }}$ terms of an A.P. is equal to twice the $\mathrm{m}^{\text {th }}$ term.

Question 5:

Find the sum of integers from 1 to 100 that are divisible by 2 or 5 .

Solution:

The integers from 1 to 100, which are divisible by 2, are 2, 4, $6 \ldots . .100$.
This forms an A.P. with both the first term and common difference equal to 2 .
$\Rightarrow 100=2+(\mathrm{n}-1) 2$
$\Rightarrow \mathrm{n}=5 \mathrm{O}$
Therefore, the sum of integers from 1 to 100 that are divisible by 2 is given as:
$2+4+6+\ldots+100=(50 / 2)[2(2)+(50-1)(2)]$
$=(50 / 2)(4+98)$
$=25(102)$
$=2550$
The integers from 1 to 100 , which are divisible by $5,10 . . .100$
This forms an A.P. with both the first term and common difference equal to 5 .
Therefore, $100=5+(n-1) 5$
$\Rightarrow 5 \mathrm{n}=100$
$\Rightarrow \mathrm{n}=100 / 5$
$\Rightarrow \mathrm{n}=2 \mathrm{O}$
Therefore, the sum of integers from 1 to 100 that are divisible by 2 is given as:
$5+10+15+\ldots+100=(20 / 2)[2(5)+(20-1)(5)]$
$=(20 / 2)(10+95)$
$=10(105)$
$=1050$
Hence, the integers from 1 to 100 , which are divisible by both 2 and 5 are 10, 20, 1 100.

This also forms an A.P. with both the first term and common difference equal to 10.

Therefore, $100=10+(n-1) 10$
$\Rightarrow 10 \mathrm{n}=100$
$\Rightarrow \mathrm{n}=100 / 10$
$\Rightarrow \mathrm{n}=10$
$10+20+\ldots+100=(10 / 2)[2(10)+(10-1)(10)]$
$=(10 / 2)(20+90)$
$=5(110)$
$=550$
Therefore, the required sum is:
$=2550+1050-550$
$=3050$
Hence, the sum of the integers from 1 to 100 , which are divisible by 2 or 5 is 3050 .

