Important Questions for Class 11 Maths Chapter 9 Straight Lines

Question 1:

Calculate the slope of a line, that passes through the origin, and the mid-point of the segment joining the points $P(0,-4)$ and $B(8, o)$.

Solution:

Given that,
The coordinates of the mid-point of the line segment joining the points $\mathrm{P}(0,-4)$ and $\mathrm{B}(8$, o) are:
$[(0+8) / 2,(-4+0) / 2]=(4,-2)$
It is known that the slope (m) of a non-vertical line passing through the points ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and (x_{2},
y_{2}) is given by the formula
$\mathrm{m}=\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right) /\left(\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)\right.$, where $\left(\mathrm{x}_{2}\right.$ is not equal to $\left.\mathrm{x}_{1}\right)$
Therefore, the slope of the line passing through the points $(0,0$,$) and (4,-2)$ is
$m=(-2-0) /(4-0)$
$m=-2 / 4$
$m=-1 / 2$
Hence, the required slope of the line is $-1 / 2$

Question 2:

Find the equation of the line which is at a perpendicular distance of 5 units from the origin and the angle made by the perpendicular with the positive x -axis is 30°.

Solution:

If p is the length of the normal from the origin to a line and ω is the angle made by the normal with the positive direction of the x -axis

Then, the equation of the line for the given condition is written by
$x \cos \omega+y \sin \omega=p$.
Here, $\mathrm{p}=5$ units and $\omega=30^{\circ}$
Thus, the required equation of the given line is
$x \cos 30^{\circ}+y \sin 30^{\circ}=5$
$x(\sqrt{ } 3 / 2)+y(1 / 2)=5$
It becomes
$\sqrt{ } 3 x+y=10$
Thus, the required equation of a line is $\sqrt{ } 3 x+y=10$

Question 3:

Find the equation of the line perpendicular to the line $x-7 y+5=0$ and having $x-$ intercept 3

Solution:

The equation of the line is given as $x-7 y+5=0$.
The above equation can be written in the form $\mathrm{y}=\mathrm{mx}+\mathrm{c}$
Thus, the above equation is written as:
$y=(1 / 7) x+(5 / 7)$
From the above equation, we can say that,
The slope of a line, $m=5 / 7$
The slope of the line perpendicular to the line having a slope of $1 / 7$ is
$\mathrm{m}=-1 /(1 / 7)=-7$
Hence, the equation of a line with slope -7 and intercept 3 is given as:
$y=m(x-d)$
$\Rightarrow \mathrm{y}=-7(\mathrm{x}-3)$
$\Rightarrow y=-7 x+21$
$7 x+y=21$
Hence, the equation of a line which is perpendicular to the line $x-7 y+5=0$ with $x-$ intercept 3 is $7 \mathrm{x}+\mathrm{y}=21$.

Question 4:

The perpendicular from the origin to the line $y=m x+c$ meets it at the point ($-1,2$). Find the values of m and c.

Solution:

The given equation of the line is $y=m x+c$.
From the given condition, the perpendicular from the origin meets the given line at $(-1,2)$.
Hence, the line joining the points $(0, o)$ and $(-1,2)$ is perpendicular to the given line.
The slope of the line joining $(0,0)$ and $(-1,2)$ is
$=2 /-1=-2$
Therefore,
$m(-2)=-1$ (Since the two lines are perpendicular)
$m=1 / 2$
Since points $(-1,2)$ lies on the given line, it satisfies the equation $y=m x+c$.
Now, substitute the value of $m,(x, y)$ coordinates in the equation:
$2=m(-1)+c$
$2=1 / 2(-1)+c$
$2=-1 / 2+c$
C $=2+(1 / 2)$
$C=5 / 2$
Therefore, the value of m and c are $1 / 2$ and $5 / 2$ respectively.

Question 5:

Find the points on the x-axis whose distance from the line equation $(x / 3)+(y / 4)=1$ is given as 4units.

Solution:

Given that,
The equation of a line $=(x / 3)+(y / 4)=1$
It can be written as:
$4 x+3 y-12=0$
Compare the equation (1) with general line equation $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=0$,
we get the values $\mathrm{A}=4, \mathrm{~B}=3$, and $\mathrm{C}=-12$.
Let (a, o) be the point on the x -axis whose distance from the given line is 4 units.
we know that the perpendicular distance (d) of a line $A x+B y+C=0$ from a point ($\mathrm{x}_{1}, \mathrm{y}_{1}$) is given by
$\mathrm{D}=\left|\mathrm{Ax}_{1}+\mathrm{By}_{1}+\mathrm{C}\right| / \sqrt{ } \mathrm{A}^{2}+\mathrm{B}^{2}$
Now, substitute the values in the above formula, we get:

$$
\begin{aligned}
& 4=|4 a+0+-12| / \sqrt{ } 4^{2}+3^{2} \\
& \Rightarrow 4=|4 a-12| / 5 \\
& \Rightarrow|4 a-12|=20 \\
& \Rightarrow \pm(4 a-12)=20 \\
& \Rightarrow(4 a-12)=20 \text { or }-(4 a-12)=20
\end{aligned}
$$

Therefore, it can be written as:
$(4 a-12)=20$
$4 a=20+12$
$4 \mathrm{a}=32$
$a=8$
(or)
$-(4 a-12)=20$
$-4 a+12=20$
$-4 \mathrm{a}=20-12$
$-4 a=8$
$a=-2$
$\Rightarrow \mathrm{a}=8$ or -2
Hence, the required points on x axis are $(-2,0)$ and $(8,0)$.

