IMPORTANT QUESTIONS CLASS - 11 PHYSICS CHAPTER
 - 3 MOTION IN A PLANE

Question 1.

A body is acted upon by the following, velocities:
(i) $7 \mathrm{~ms}^{-1}$ due to E,
(ii) $10 \mathrm{~ms}^{-1}$ due S,
(iii) $52-\sqrt{ } \mathrm{ms}^{-1}$ due N.E.

Find the magnitude and direction of the resultant velocity.

Answer:
Let OA, OB and OC represent the velocities given in the statement i.e.
$\mathrm{OA}=7 \mathrm{~ms}^{-1}$
$\mathrm{OB}=10 \mathrm{~ms}^{-1}$
and $\mathrm{OC}=52-\sqrt{ } \mathrm{ms}^{-1}$
To find their resultant velocity, resolve OC into two rectangular components along east and north.

$$
\begin{aligned}
& \therefore \text { Component of } O C \text { along East }=5 \sqrt{2} \cos 45^{\circ} \\
& \quad=5 \sqrt{2} \times \frac{1}{\sqrt{2}}=5 \mathrm{~ms}^{\prime} \text { represented by } O D \\
& \text { Component of } O C \text { along north }=5 \sqrt{2} \sin 45^{\circ} \\
& \quad=5 \sqrt{2} \times \frac{1}{\sqrt{2}}=5 \mathrm{~ms}^{\prime} \text { represented by } O F
\end{aligned}
$$

Hence resultant velocity along east $=$ $7+5=12 \mathrm{~ms}^{-1}$ and resultant velocity along south $=\mathrm{OB}-\mathrm{OF}=10-5=5$
ms^{-1}.
If R be the resultant velocity, then the magnitude of R is obtained by

$$
\begin{aligned}
\mathrm{R} & =\sqrt{\mathrm{OG}^{2}+\mathrm{OH}^{2}} \\
& =\sqrt{(12)^{2}+5^{2}} \\
& =\sqrt{144+25}=13 \mathrm{~ms}^{-1} .
\end{aligned}
$$

applying the parallelogram law of vector addition as

When $\mathrm{OG}=12 \mathrm{~ms}^{-1}$ and $\mathrm{OH} 5 \mathrm{~ms}^{-1}$.

The direction of R : Let θ be the angle made by R with the east.
\therefore in rt. $\angle \mathrm{d} \triangle \mathrm{OGI}$,

$$
\begin{aligned}
\tan \theta & =\frac{\mathrm{GI}}{\mathrm{OG}}=\frac{5}{12}=0.4167 \\
& =\tan 22^{\circ} 37^{\circ}
\end{aligned}
$$

$$
\therefore \quad \theta=22^{\circ} 37^{\prime}
$$

Question 2.

A projectile is fired horizontally with a velocity of 98 ms^{-1} from the top of a hill 490 m high. Find:
(i) the velocity with which it strikes the ground.
(ii) the time is taken to reach the ground.
(iii) the distance of the target from the hill.

Answer:
(i) $\mathrm{h}=490 \mathrm{~m}, \mathrm{a}=\mathrm{g}=9.8 \mathrm{~ms}^{2}$
U_{y} = initial velocity along the y -axis
at the top of the tower $=0$

$$
\begin{aligned}
& \therefore \text { using } \quad \mathrm{S}=\mathrm{ut}+\frac{1}{2} \mathrm{at}^{2} \text {, we get } \\
& 490=0+\frac{1}{2} \mathrm{gt}^{2}=\frac{9.8}{2} \mathrm{t}^{2} \\
& \therefore \quad t=\sqrt{\frac{490}{4.9}}=\sqrt{100}=10 \mathrm{~s} .
\end{aligned}
$$

(ii) Let v be the velocity along the y axis with which the projectile hits the ground.

$$
\begin{aligned}
\therefore \quad & v \\
& =u+\text { at gives } \\
v & =0+g t=9.8 \times 10 \\
& =98 \mathrm{~ms}^{-1}
\end{aligned}
$$

If V be the resultant velocity of hitting the ground

Then

$$
\begin{aligned}
\mathrm{V} & =\sqrt{\mathrm{u}^{2}+\mathrm{v}^{3}}=\sqrt{(98)^{2}+(98)^{2}} \\
& =\sqrt{2(98)^{2}}=98 \sqrt{2}
\end{aligned}
$$

Let θ be the angle made by V with the horizontal

$$
\begin{array}{rlrl}
& \therefore & \tan \theta & =\frac{\mathrm{AC}}{\mathrm{PA}}=\frac{\mathrm{v}}{\mathrm{u}}=\frac{\mathrm{gt}}{\mathrm{u}} \frac{98}{98}=1 \\
\therefore & \theta & =45^{\circ}
\end{array}
$$

(iii) Let x, be the distance of the target from the hill.
$\therefore \mathrm{x}=$ horizontal distance covered
with u in a time t .
ut $=98 \times 10=980 \mathrm{~m}$.

Question 3.

A boy stands at 78.4 m from a building and throws a ball which just enters a window 39.2 m above the ground. Calculate the velocity of the projection of the ball.
Answer:
Let the boy standing at A throw a ball with initial velocity u.
$\theta=$ angle of the projection made with the horizontal.
As the boy is at 78.4 m from the building and the ball just enters above the ground.

$$
\therefore \quad \begin{aligned}
\mathrm{h}_{m} & =39.2 \mathrm{~m} \\
\mathrm{R} & =\text { horizontal range } \\
& =2 \times 78.4 \mathrm{~m} \\
& =156.8 \mathrm{~m}
\end{aligned}
$$

Now we know that

$$
\begin{align*}
& \mathrm{R}=\frac{\mathrm{u}^{2} \sin 2 \theta}{\mathrm{~g}}=2 \times 78.4 \tag{1}\\
& \mathrm{~h}_{\mathrm{m}}=\frac{\mathrm{u}^{2} \sin ^{2} \theta}{2 \mathrm{~g}}=39.2 \tag{2}
\end{align*}
$$

$$
\begin{aligned}
& \frac{\text { (1) }}{\text { (2) }} \text { gives } \quad \frac{\mathrm{R}}{\mathrm{~h}_{\mathrm{m}}}=2 \times \frac{78.4}{39.2} \\
& =\frac{\mathrm{u}^{2} \sin 2 \theta}{\mathrm{~g}} \times \frac{2 \mathrm{~g}}{\mathrm{u}^{2} \sin ^{2} \theta} \\
& 4=2 \times \frac{2 \sin \theta \cos \theta}{\sin ^{2} \theta} \\
& \text { or } \\
& 4=4 \cot \theta=\frac{4}{\tan \theta} \\
& \text { or } \\
& \tan \theta=\frac{4}{4}=1=\tan 45 \\
& \therefore \quad \theta=45^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \text { From (1) } \quad \begin{aligned}
\frac{\mathrm{u}^{2} \sin 90}{9.8} & =2 \times 78.4 \\
\text { or } \quad \mathrm{u} & =\sqrt{2 \times 9.8 \times 78.4}=\sqrt{39.2 \times 2 \times 19.6} \\
& =\sqrt{(39.2)^{2}} \\
\mathrm{u} & =39.2 \mathrm{~ms}^{-1} .
\end{aligned}
\end{aligned}
$$

Question 4.

Two particles located at a point begin to move with velocities $4 \mathbf{~ m s}^{-1}$ and $1 \mathrm{~ms}^{-}$ ${ }^{1}$ horizontally in opposite directions. Determine the time when their velocity vectors become perpendicular. Assuming that the motion takes place in a uniform gravitational field of strength g.

Answer:

Let v_{1} and v_{2} be the velocities of first and $2 n d$ particles respectively after a time t.
$\therefore \mathrm{v}_{1}=4 \hat{1}-\mathrm{gt} \hat{\jmath}$
$\mathrm{v}_{2}=-\hat{\mathrm{i}}-\mathrm{gt} \hat{\jmath}$
For v_{1} and v_{2} to be \perp to each other, then their dot product must be zero.

$$
\begin{aligned}
& \therefore \quad \mathrm{t}=\frac{2}{\mathrm{~g}} \text {. }
\end{aligned}
$$

Question 5.

A body is projected with a velocity of $40 \mathrm{~ms}^{-1}$. After two seconds, it crosses a verticle pole of $\mathbf{2 0 . 4} \mathbf{~ m}$. Find the angle of projection and the horizontal range.

Answer:
Here, $\mathrm{u}=40 \mathrm{~ms}^{-1}$
height of vertical pole, $\mathrm{h}=20.4 \mathrm{~m}$
$t=2$ seconds
Let us take vertical motion

$$
\begin{aligned}
& y=u_{5} t+\frac{1}{2} a_{5} t^{2} \\
& y=h=20.4 \\
& t=2 \mathrm{~s}, u_{\mathrm{y}}=u \sin \theta=40 \sin \theta \\
& \mathrm{a}_{1}=-\mathrm{g}=-9.8 \mathrm{~ms}^{-2} \\
& \therefore \text { From (1) and (2), we get } \\
& 20.4=40 \sin \theta \times 2+\frac{1}{2}(-9.8) \times 2^{2} \\
& =80 \sin \theta-19.6 \\
& 80 \sin \theta=20.4+19.6=40 \\
& \sin \theta=\frac{40}{80}=\frac{1}{2}=\sin 30^{\circ} \\
& \theta=30^{\circ}
\end{aligned}
$$

\therefore The horizontal range is given by the relation,

$$
\begin{aligned}
& R=\frac{u^{2} \sin 2 \theta}{g}=\frac{(40)^{2} \sin 60^{\circ}}{9.8} \\
&=\frac{1600}{9.8} \times \frac{\sqrt{3}}{2}=\frac{400 \sqrt{3}}{4.9} \\
&=141.39 \mathrm{~m}
\end{aligned}
$$

Question 6.

The greatest and the least resultant of two forces acting at a point are 29 N and 5 N respectively. If each force is increased by 3 N, find the resultant of two new forces when acting at a point at an angle of 90° with each other.
Answer:
Let A and B be the two forces.
\therefore Greatest Resultant $=\mathrm{A}+\mathrm{B}=29 \mathrm{~N} \ldots$. (1)
least Resultant $=\mathrm{A}-\mathrm{B}=5 \mathrm{~N}$....(2)
Adding (1) and (2), we get

$$
\begin{array}{lrlrl}
& & 2 \mathbf{A} & =34 \mathrm{~N} \\
& \text { or } & \mathbf{A} & =17 \mathrm{~N} \\
\therefore \text { from }(1), & 17+\mathbf{B} & =29 \\
\text { or } & \mathbf{B} & =29-17=12 \mathrm{~N}
\end{array}
$$

Let A and B be the new forces such that

$$
\begin{aligned}
& \mathrm{A}^{\prime}=\mathrm{A}+3=17+3=20 \mathrm{~N} \text { and } \\
& \mathrm{B}^{\prime}=\mathrm{B}+3=12+3=15 \mathrm{~N}
\end{aligned}
$$

Here, $\theta=$ angle between A^{\prime} and $B^{\prime}=90^{\circ}$
Let R be the resultant of A^{\prime} and B '.
\therefore according to parallelogram law of vector addition

$$
\begin{aligned}
\mathrm{R} & =\sqrt{\mathrm{A}^{\prime 2}+\mathrm{B}^{\prime 2}+2 \mathrm{~A}^{\prime} \mathrm{B}^{\prime} \cos 90^{\circ}} \\
& =\sqrt{\mathrm{A}^{\prime 2}+\mathrm{B}^{\prime 2}}=\sqrt{20^{2}+15^{2}} \\
& =\sqrt{400+225}=\sqrt{625} \\
& =\sqrt{(25)^{2}}=25 \\
\therefore \quad \mathrm{R} & =25 \mathrm{~N}
\end{aligned}
$$

The direction of R :
Let β be the angle made by R with A^{\prime}
$\therefore \quad \tan \beta=\frac{\mathbf{B}^{\prime}}{\mathbf{A}^{*}}=\frac{15}{20}=0.7500=\tan 36^{\circ} .52^{\circ}$
\therefore

Question 7.

An aircraft is trying to fly due north at a speed of 100 $\mathbf{m s}^{-1}$ but is subjected to a crosswind blowing from west to east at $50 \mathrm{~ms}^{-1}$. What is the actual velocity of the aircraft relative to the surface of the earth?
Answer:
Let V_{a} and V_{w} be the velocities of aircraft and wind respectively.
$\therefore \mathrm{V}_{\mathrm{a}}=100 \mathrm{~ms}^{-1}$ along N direction
$\mathrm{V}_{\mathrm{w}}=50 \mathrm{~ms}^{-1}$ along E direction
If V be the resultant velocity of the aircraft, then these may be represented as in the figure given below. So the magnitude of V is given by,

$$
\begin{aligned}
V & =\sqrt{V_{3}^{2}+V_{w}^{2}}=\sqrt{(100)^{2}+(50)^{2}} \\
& =\sqrt{10000+2500}=\sqrt{12500} \\
& =111.8 \mathrm{~ms}^{\prime}
\end{aligned}
$$

Let $\angle \mathrm{AOB}=\theta$ be the angle which the resultant makes with the north direction.

$$
\begin{aligned}
\therefore \quad \tan \theta & =\frac{\mathrm{V}_{\mathrm{w}}}{\mathrm{~V}_{\mathrm{i}}}=\frac{50}{100}=\frac{\mathrm{I}}{2}=0.5 \\
& =\tan 26^{\circ} 34^{\circ} \\
\therefore \quad \theta & =26^{\circ} 34^{\circ} .
\end{aligned}
$$

Question 8.

Calculate the total linear acceleration of a particle moving in a circle of radius 0.4 m at the instant when its angular velocity is $2 \mathrm{rad} \mathrm{s}^{-1}$ and angular acceleration is $5 \mathbf{r a d ~ s}{ }^{-2}$.

Answer:

Since the particle possesses angular acceleration, so its total linear acceleration (a) is the vector sum of the tangential acceleration (a,) and the centripetal acceleration (ac). a_{1} and a_{c}, are at right angles to each other.
$a=\backslash \operatorname{sqrt}\left\{a _\{t\}^{\wedge}\{2\}+a _\{c\}^{\wedge}\{2\}\right\}$
Question 9.
An airplane flies 400 km west from city A to city B then 300 km north-east to city C and finally 100 km north to city D. How far is it from city A to city D? In what direction must the airplane go to return directly to the city A from city D ?

Answer:
Given, $\mathrm{AB}=400 \mathrm{~km}$
$\mathrm{BC}=300 \mathrm{~km}$
$C D=100 \mathrm{~km}$
$\mathrm{AD}=$?

Let $\mathrm{N}_{1}, \mathrm{~N}_{2}$ represent north directions.
$\angle \mathrm{ABC}=45^{\circ}$
Draw CC' $\perp \mathrm{AB}$, And $\mathrm{CB}{ }^{\prime} \perp \mathrm{BN}_{2}$
Now in $\triangle B C^{\prime} C$

$$
\begin{aligned}
& \frac{C C^{\prime}}{B C}=\sin 45^{\circ}=\frac{1}{\sqrt{2}} \\
\therefore & C C^{\prime}=\frac{B C}{\sqrt{2}}=\frac{300}{\sqrt{2}}=150 \sqrt{2}=212 \mathrm{~km} .
\end{aligned}
$$

\therefore Distance $\mathrm{C}^{\prime} \mathrm{D}$ is given by

$$
\begin{aligned}
C^{\prime} D & =C^{\prime} C+C D \\
& =212+100=312 \mathrm{~km} .
\end{aligned}
$$

Also in $\triangle \mathrm{BC}^{\prime} \mathrm{C}$,

$$
\frac{B C^{\circ}}{B C}=\cos 45^{\circ}=\frac{1}{\sqrt{2}}
$$

or

$$
B C^{\prime}=\frac{B C}{\sqrt{2}}=\frac{300}{\sqrt{2}}=150 \sqrt{2}=212 \mathrm{~km} .
$$

$$
\therefore \quad \mathrm{AC}^{-}=\mathrm{AB}-\mathrm{BC}^{\prime}=400-212=188 \mathrm{~km} .
$$

From $\mathrm{AAC}^{\prime} \mathrm{D}, \mathrm{AD}$ is given by

Question 10.

Which of the following quantities are independent of the choice of the orientation of the coordinates axes:
$\mathbf{a}+\mathbf{b}, 3 \mathbf{a}_{\mathrm{x}}+2 \mathrm{~b}_{\mathbf{y}},[\mathbf{a}+\mathbf{b}-\mathbf{c}]$, angle between b and c, a ?
Answer:
$\mathrm{a}+\mathrm{b},|\mathrm{a}+\mathrm{b}-\mathrm{c}|$, angle between b and c , a are the quantities that are independent of the choice of the orientation of the coordinate axes.

But the value of $3 a_{x}+2 b_{y}$ depends on the orientation of the axes.

$$
\begin{aligned}
& A D=\sqrt{\left(A C^{\prime}\right)^{2}+\left(C^{\prime} D\right)^{2}} \\
& =\sqrt{(188)^{2}+(312)^{2}} \\
& \text { or } \quad A D=364 \mathrm{~km} \\
& \text { Let } \angle C^{\prime} D A=\theta=\text { ? } \\
& \therefore \quad \tan \theta=\frac{\mathrm{AC}^{*}}{\mathrm{DC}^{\circ}}=\frac{188}{312}=0.6026 \\
& =\tan 31^{\circ} \\
& \therefore \quad \theta=31^{\circ} \text { East of South. }
\end{aligned}
$$

