CHAPTER - 11 Exponents and Powers | CLASS 7TH MATHS IMPORTANT QUESTIONS

Important Questions

Question 1.
Express 343 as a power of 7 .
Solution:
We have $343=7 \times 7 \times 7=7^{3}$
Thus, $343=7^{3}$

7	343
7	49
7	7
	1

Question 2.
Which is greater 3^{2} or 2^{3} ?
Solution:
We have $3^{2}=3 \times 3=9$
$2^{3}=2 \times 2 \times 2=8$
Since $9>8$
Thus, $3^{2}>2^{3}$
Question 3 .
Express the following number as a powers of prime factors:
(i) 144
(ii) 225

Solution:
(i) We have
$144=2 \times 2 \times 2 \times 2 \times 3 \times 3=2^{4} \times 3^{2}$ Thus, $144=2^{4} \times 3^{2}$
(ii) We have
$225=3 \times 3 \times 5 \times 5=3^{2} \times 5^{2}$ Thus, $225=3^{2} \times 5^{2}$

2	144
2	72
2	36
2	18
	9
3	3
	1

3	225
3	75
5	25
5	5
	1

Question 4.
Find the value of:
(i) $(-1)^{1000}$
(ii) $(1)^{250}$
(iii) $(-1)^{121}$
(iv) $(10000)^{0}$

Solution:
(i) $(-1)^{1000}=1\left[\because(-1)^{\text {even number }}=1\right]$
(ii) $(1)^{250}=1\left[\because(1)^{\text {even number }}=1\right]$
(iii) $(-1)^{121}=-1\left[\because(-1)^{\text {odd number }}=-1\right]$
(iv) $(10000)^{0}=1\left[\because \mathrm{a}^{0}=1\right]$

Question 5.
Express the following in exponential form:
(i) $5 \times 5 \times 5 \times 5 \times 5$
(ii) $4 \times 4 \times 4 \times 5 \times 5 \times 5$
(iii) $(-1) \times(-1) \times(-1) \times(-1) \times(-1)$
(iv) $\mathrm{a} \times \mathrm{a} \times \mathrm{a} \times \mathrm{b} \times \mathrm{c} \times \mathrm{c} \times \mathrm{c} \times \mathrm{d} \times \mathrm{d}$

Solution:
(i) $5 \times 5 \times 5 \times 5 \times 5=(5)^{5}$
(ii) $4 \times 4 \times 4 \times 5 \times 5 \times 5=4^{3} \times 5^{3}$
(iii) $(-1) \times(-1) \times(-1) \times(-1) \times(-1)=(-1)^{5}$
(iv) $a \times a \times a \times b \times c \times c \times c \times d \times d=a^{3} b^{1} c^{3} d^{2}$

Question 6.
Express each of the following as product of powers of their prime factors:
(i) 405
(ii) 504
(iii) 500

Solution:
(i) We have
$405=3 \times 3 \times 3 \times 3 \times 5=3^{4} \times 5^{1}$
Thus, $405=3^{4} \times 5^{1}$
(ii) We have
$504=2 \times 2 \times 2 \times 3 \times 3 \times 7=2^{3} \times 3^{2} \times 7^{1}$ Thus, $504=2^{3} \times 3^{2} \times 7^{1}$

2	504
2	252
2	126
3	63
3	21
7	7
	1

(iii) We have
$500=2 \times 2 \times 5 \times 5 \times 5=2^{2} \times 5^{3}$ Thus, $500=2^{2} \times 5^{3}$

Question 7.

2	500
2	250
5	125
5	25
5	5
	1

Simplify the following and write in exponential form:
(i) $\left(5^{2}\right)^{3}$
(ii) $\left(2^{3}\right)^{3}$
(iii) $\left(a^{b}\right)^{c}$
(iv) $\left[(5)^{2}\right]^{2}$

Solution:
(i) $\left(5^{2}\right)^{3}=5^{2 \times 3}=5^{6}$
(ii) $\left(2^{3}\right)^{3}=2^{3 \times 3}=2^{9}$
(iii) $\left(\mathrm{a}^{\mathrm{b}}\right)^{\mathrm{c}}=\mathrm{a}^{\mathrm{b} \times \mathrm{c}}=\mathrm{a}^{\mathrm{bc}}$
(iv) $\left[(5)^{2}\right]^{2}=5^{2 \times 2}=5^{4}$

Question 8.
Verify the following:
(i) $\left(-\frac{3}{4}\right)^{3}=-\frac{27}{64}$ (ii) $\left(-\frac{2}{3}\right)^{6}=\frac{64}{729}$

Solution:
(i) $\left(-\frac{3}{4}\right)^{3}=\left(-\frac{3}{4}\right) \times\left(-\frac{3}{4}\right) \times\left(-\frac{3}{4}\right)$

$$
=-\frac{3 \times 3 \times 3}{4 \times 4 \times 4}=-\frac{27}{64}
$$

(ii) $\left(-\frac{2}{3}\right)^{6}=\left(-\frac{2}{3}\right) \times\left(-\frac{2}{3}\right) \times\left(-\frac{2}{3}\right) \times\left(-\frac{2}{3}\right)$

$$
\times\left(-\frac{2}{3}\right) \times\left(-\frac{2}{3}\right)
$$

$=\frac{64}{729}$ Hence verified.

Question 9.
Simplify:
(i) $\frac{2^{2} \times 3^{4} \times 2^{5}}{2^{4} \times 9} \quad$ (ii) $2^{3} \times k^{3} \times 5 k^{4}$

Solution:
(i) $\frac{2^{2} \times 3^{4} \times 2^{5}}{2^{4} \times 9}=\frac{2^{2+5} \times 3^{4}}{2^{4} \times 3^{2}}=\frac{2^{7} \times 3^{4}}{2^{4} \times 3^{2}}$
$=2^{7-4} \times 3^{4-2}=2^{4} \times 3^{2}$
$=16 \times 9=144$
(ii) $2^{3} \times k^{3} \times 5 k^{4}=8 \times 5 \times k^{3+4}=40 k^{7}$

Question 10.
Simplify and write in exponential form:
(i) $\left(\frac{3^{5}}{3^{2}}\right) \times 3^{10}$
(ii) $8^{2} \div 2^{3}$

Solution:
(i) $\left(\frac{3^{5}}{3^{2}}\right) \times 3^{10}=3^{5-2} \times 3^{10}=3^{3} \times 3^{10}=3^{3+10}=3^{13}$
(ii) $8^{2} \div 2^{3}=\left(2^{3}\right)^{2} \div 2^{3}=2^{3 \times 2} \div 2^{3}$

$$
=2^{6} \div 2^{3}=2^{6-3}=2^{3}=8
$$

