Important Questions Class 8 Maths Chapter 10 Exponents and Power

Question 1: The human body has about 100 billion cells. This number can be written in exponential form as

10-11

1011

109
10-9

Answer 1: Option (b) is the correct answer.
Explanation 1: 100 billion $=100,000,000,000=1011$.
Question 2: The distance between earth and sun is 150 million kilometres which can be written in exponential form as \qquad .

Answer 2: $1.5 \times 108 \mathrm{~km}$
Explanation 2: 1 million $\mathrm{km}=1,000,000$
Therefore, 150 million $\mathrm{km}=150,000,000 \mathrm{~km}=1.5 \times 108 \mathrm{~km}$.
Question 3: Express $27 / 64$ and $-27 / 64$ as powers of a rational number.
Answer 3: $27=3 \times 3 \times 3=3^{3}$
$-27=-3 \times-3 \times-3=(-3)^{3}$
$64=4 \times 4 \times 4=4^{3}$
Now using the identity $(\mathrm{a} / \mathrm{b}) \mathrm{m}=\mathrm{am} / \mathrm{bm}$
We get
$27 / 64=3^{3} / 4^{3}=(3 / 4)^{3}$
$\Rightarrow-27 / 64=(-3)^{3} / 4^{3}=(-3 / 4)^{3}$
Question 4: $(49 \times z-3) /(7-3 \times 10 \times z-5)(z \neq 0)$

Answer 4: Using the identity $a m \div a n=a m-n$
$(49 \times z-3) /(7-3 \times 10 \times z-5)$
$=\left(7^{2} \times z-3\right) /(7-3 \times 10 \times z-5)$
$=(72+3 \times z-3+5) / 10$
$=\left(75 \times z^{2}\right) / 10$
$=\left(75 z^{2}\right) / 10$
Question 5: Find the value of x so that
$(5 / 3)-2 \times(5 / 3)-14=(5 / 3) 8 x$
Answer 5: Using the identity $a m \times a n=a m+n$
We get
$(5 / 3)-2 \times(5 / 3)-14=(5 / 3) 8 x$
$\Rightarrow(5 / 3)-2-14=(5 / 3) 8 x$

Comparing the power of both sides,
$\Rightarrow-16=8 x$
$\Rightarrow x=-2$
Question 6: Divide 293 by 10,00,000 and express the result in standard form.
Answer 6: Using the identity a-m = 1/am
$1000000=106$
$\Rightarrow 293 / 106$
$=293 \times 10-6$
$=2.93 \times 10-6 \times 10^{2}$
$=2.93 \times 10-4$

Question 7: If $53 x-1 \div 25=125$, find the value of x.

Answer 7: $53 x-1 \div 5^{2}=5^{3}$
$53 x-1-2=5^{3}$ [As am $\left.\div a n=a m-n\right]$
$53 x-3=5^{3}$

Comparing the power of both sides,
$3 x-3=3$
$\Rightarrow x-1=1$
$\Rightarrow x=2$
Question 8: Simplify
$(3-5 \times 10-5 \times 125) /(5-7 \times 6-5)$
Answer 8: $(3-5 \times 10-5 \times 125) /(5-7 \times 6-5)$
$=\left(3-5 \times 10-5 \times 5^{3}\right) /(5-7 \times(2 \times 3)-5)$
$=\left(3-5 \times 2-5 \times 5-5 \times 5^{3}\right) /(5-7 \times 2-5 \times 3-5)$
[Since, (ab)m = ambm]
$=(3-5 \times 2-5 \times 5-5+3) /(5-7 \times 2-5 \times 3-5)$
$=(3-5 \times 2-5 \times 5-2) /(5-7 \times 2-5 \times 3-5)$
[Since, $a m \times a n=a m+n]$
$3-5+5 \times 2-5+5 \times 5-2+7$
$=1 \times 1 \times 3125$
$=3125$
Question 9: Express the number appearing in the following statements in standard form.
(i) Size of bacteria is 0.0000005 m .
(ii) Size of a plant cell is $\mathbf{0 . 0 0 0 0 1 2 7 5 m}$.

Answer 9: (i) Size of bacteria $=0.0000005$
$=5 / 10000000$
$=5 / 107$
$=5 \times 10-7 \mathrm{~m}$
(ii) Size of a plant cell $=0.00001275 \mathrm{~m}$
$=1.275 / 100000$
$=1.275 / 105$
$=1.275 \times 10-5 \mathrm{~m}$
Question 10: In a stack, there are 5 books each of thickness 20 mm and 5 paper sheets each of thickness 0.016 mm . What is the total thickness of the stack?

Answer 10: If thickness of one book $=20 \mathrm{~mm}$

Then thickness of 5 books $=20 \times 5=100 \mathrm{~mm}$
If thickness of one paper $=0.016 \mathrm{~mm}$
Then thickness of 5 papers $=0.016 \times 5=0.08 \mathrm{~mm}$
Therefore, total thickness of a stack $=100+0.08=100.08 \mathrm{~mm}$
$=1.0008 \times 102 \mathrm{~mm}$

Question 11: Find the value of:

(i) $(2-1 \times 4-1) \div 2-2$
(ii) $(3-1+4-1+5-1) 0$

Answer 11:(i) $(2-1 \times 4-1) \div 2-2$
$=[(1 / 2) \times(1 / 4)] \div(1 / 4)$
Using the identity a-m = 1/am
$=\left(12 \times 1 / 2^{2}\right) \div 1 / 4$
$=1 / 2^{3} \div 1 / 4$
$=(1 / 8) \times 4$
$=1 / 2$
(ii) $(3-1+4-1+5-1) 0$

Using the identity $\mathrm{a} 0=1$
$=1$

Question 12: Sanchay put a 1 cm stick of gum through a (1×3-2) machine. How long was the stick when it came out?

Answer 12: Size of the machine $=1 \times 3-2=1 / 3^{2}=1 / 9$
Length of the stick put through the machine $=1 \mathrm{~cm}$.
Now we can see a negative (-) sign in the power means that the machine is a shrinking machine.

Therefore, $1 \times 1 / 9=1 / 9 \mathrm{~cm}$.
Thus, the length when it comes out of the machine becomes $1 / 9 \mathrm{~cm}$.

