Important Questions Class 8 Maths Chapter 12
 Factorisation

Question 1: Find the common factors of the given term:

6abc, 24ab ${ }^{2}, 12 a^{2} b$
10pq, 20qr, 30rp
$3 x^{2} y^{3}, 10 x^{3} y^{2}, 6 x^{2} y^{2} z$
Answer 1: (a) On factorising 6abc, $24 a b^{2}$ and $12 a^{2} b$, we get
$6 a b c=2 \times 3 \times a \times b \times c$
$24 a b^{2}=2 \times 2 \times 2 \times 3 \times a \times b \times b$
$12 a^{2} b=2 \times 2 \times 3 \times a \times a \times b$
Hence, the common factors of $6 a b c, 24 a b^{2}$ and $12 a^{2} b$ are $2,3, a$ and b
Therefore, multiplying the common factors we get
$2 \times 3 \times a \times b=6 a b$
(b) On factorising 10pq, 20qr and 30rp, we get
$10 p q=2 \times 5 \times p \times q$
$20 q r=2 \times 2 \times 5 \times q \times r$
$30 r p=2 \times 3 \times 5 \times r \times p$
Hence, the common factors are 2 and 5
Therefore, multiplying the common factors we get
$2 \times 5=10$
(c) On factorising $3 x^{2} y^{3}, 10 x^{3} y^{2}, 6 x^{2} y^{2} z$, we get
$3 x^{2} y^{3}=3 \times x \times x \times y \times y \times y$
$10 x^{3} y^{2}=2 \times 5 \times x \times x \times x \times y \times y$
$6 x^{2} y^{2} z=2 \times 3 \times x \times x \times y \times y \times z$

Hence, the common factors are x, x, y and y
Therefore, multiplying the common factors we get
$x \times x \times y \times y=x^{2} y^{2}$
Question 2: Factorise the following expressions

$$
\begin{aligned}
& a x^{2} y+b x y^{2}+c x y z \\
& z-7+7 x y-x y z
\end{aligned}
$$

Answer 2: (a) On factorising $a x^{2} y, b x y^{2}$ and cxyz, we get
$a x^{2} y=a+x+x+y$
$b x y^{2}=b \times x \times y \times y$
cxyz $=c \times x \times y \times z$

Hence, the common factors are x and y
Therefore, $a x^{2} y+b x y^{2}+c x y z=x y(a x+b y+c z)$
(b) $z-7+7 x y-x y z$
$=>\mathrm{z}-7-\mathrm{z}(\mathrm{xy})+7(\mathrm{xy})$
$=>(z-7)-x y(z-7)$
$\Rightarrow(1-x y)(z-7)$
Question 3: Factorise the following expressions.

$$
\begin{aligned}
& (I+m)^{2}-4 I m\left(H i n d i: \text { Expand }(I+m)^{2} \text { first }\right) \\
& 25 m^{2}+30 m+9 \\
& 16 x 5-144 x^{3} \\
& (I+m)^{2}-(I-m)^{2}
\end{aligned}
$$

Answer 3: $(\mathrm{a})(\mathrm{I}+\mathrm{m})^{2}-4 \mathrm{Im}$
$\Rightarrow I^{2}+m^{2}+2 l m-4 I m$
$\left[\right.$ Using $\left.(x+y)^{2}=x^{2}+2 x y+y^{2}\right]$
$\Rightarrow l^{2}+m^{2}-2 l m$
$\Rightarrow(1-m)^{2}$
$\left[\right.$ Using $\left.(x-y)^{2}=x^{2}-2 x y+y^{2}\right]$
(b) $25 m^{2}+30 m+9$
$\Rightarrow(5 m)^{2}+2 \times 5 \mathrm{~m} \times 3+3^{2}$
$\Rightarrow(5 m+3)^{2}$
$\left[\right.$ Using $\left.(x+y)^{2}=x^{2}+2 x y+y^{2}\right]$
(c) $16 x 5-144 x^{3}$
$\Rightarrow 16 x^{3}\left(x^{2}-9\right)$
$\Rightarrow 16 x^{3}(x-3)(x+3) .\left[U \operatorname{sing}\left(x^{2}-y^{2}\right)=(x+y)(x-y)\right.$
(d) $(I+m)^{2}-(I-m)^{2}$
$\Rightarrow\{(I+m)-(I-m)\}\{(I+m)+(I-m)\}$.
[Using $\left.x^{2}-y^{2}=(x+y)(x-y)\right]$
$\Rightarrow(I+m-I+m)(I+m+I-m)$
$=>(2 m)(2 l)$
$=4 \mathrm{ml}$
Question 3: Factorise the following expressions:

$$
\begin{aligned}
& 10 a b+4 a+5 b+2 \\
& a^{4}-2 a^{2} b^{2}+b^{4} \\
& q^{2}-10 q+21
\end{aligned}
$$

Answer 3: (a) 10ab $+4 a+5 b+2$
$\Rightarrow 5 b(2 a+1)+2(2 a+1)$
$\Rightarrow(5 b+2)(2 a+1)$
(b) $a^{4}-2 a^{2} b^{2}+b^{4}$
$\Rightarrow\left(a^{2}\right)^{2}-2 a^{2} b^{2}+\left(b^{2}\right)^{2}$
$\Rightarrow\left(a^{2}-b^{2}\right)^{2}$
$\Rightarrow\{(a-b)(a+b)\}^{2}$
$\Rightarrow(a-b)^{2}(a+b)^{2}$
(c) $q^{2}-10 q+21$
Here we observe that,
$21=-7 \times-3$ and $-7+(-3)=-10$
$\Rightarrow q^{2}-10 q+21=q^{2}-3 q-7 q+21$
$\Rightarrow q(q-3)-7(q-3)$
$=>(q-7)(q-3)$
Question 4: Carry out the following divisions.

$$
\begin{aligned}
& 34 x^{3} y^{3} z^{3} \div 51 x y^{2} z^{3} \\
& \left(x^{3}+2 x^{2}+3 x\right) \div 2 x \\
& 9 x^{2} y^{2}(3 z-24) \div 27 x y(z-8)
\end{aligned}
$$

Answer 4: (a) $34 x^{3} y^{3} z^{3} / 51 x y^{2} z^{3}$
$=2 \times 17 \times x \times x \times x \times y \times y \times y \times z \times z \times z / 3 \times 17 \times x \times y \times y \times z \times z \times z$
$=2 x^{2} y / 3$
(b) $\left(x^{3}+2 x^{2}+3 x\right)=x\left(x^{2}+2 x+3\right)$

Therefore, $x\left(x^{2}+2 x+3\right) / 2 x$
$=\left(x^{2}+2 x+3\right) / 2$
(c) $9 x^{2} y^{2}(3 z-24) / 27 x y(z-8)$
$=9 x^{2} y^{2} \times 3(z-8) / 27 x y(z-8)$
$=x y$

Question 5: Divide the following as directed

$$
\begin{aligned}
& 20(y+4)\left(y^{2}+5 y+3\right) \div 5(y+4) \\
& 39 y^{3}\left(50 y^{2}-98\right) \div 26 y^{2}(5 y+7)
\end{aligned}
$$

Answer 5: $(a) 20(y+4)\left(y^{2}+5 y+3\right) / 5(y+4)$
$=4\left(y^{2}+5 y+3\right)$
(b) In this case, first we have to factorise $50 \mathrm{y}^{2}-98$
$50 y^{2}-98=2\left(25 y^{2}-49\right)=2(5 y+7)(5 y-7)$
Therefore, $39 y^{3}\left(50 y^{2}-98\right) / 26 y^{2}(5 y+7)$
$=2 \times 3 \times 13 \times y^{3}(5 y+7)(5 y-7) / 2 \times 13 \times y^{2}(5 y+7)$
$=3 y(5 y-7)$
Question 6: Find and correct the errors in the statement $(3 x+2)^{2}=3 x^{2}+6 x+4$

Answer 6: L. H. S. $=(3 x+2)^{2}$
$=(3 x)^{2}+2^{2}+2 \times 2 \times 3 x$
$=9 x^{2}+4+12 x$

1. H. S. $=3 x^{2}+6 x+4$

Therefore, L. H. S. \neq R. H. S.
Hence, correct statement is $(3 x+2)^{2}=9 x^{2}+4+12 x$
Question 7:Find and correct the errors in the statement
$(2 a+3 b)(a-b)=2 a^{2}-3 b^{2}$
Answer 7: L. H. S. $=(2 a+3 b)(a-b)$
$=2 a(a-b)+3 b(a-b)$
$=2 a^{2}-2 a b+3 a b-3 b^{2}$
$=2 a^{2}+a b-3 b^{2}$

1. H. S. $=2 a^{2}-3 b^{2}$

Therefore, L. H. S. \neq R. H. S.
Hence, the correct statement is $(2 a+3 b)(a-b)=2 a^{2}+a b-3 b^{2}$
Question 8:Find and correct the errors in the statement
$(z+5)^{2}=z^{2}+25$
Answer 8: L. H. S. $=(z+5)^{2}$
$(z+5)^{2}=z^{2}+10 z+25$
[Using identity $\left.(a+b)^{2}=a^{2}+2 a b+b^{2}\right]$

1. H. S. $=z^{2}+25$

Hence, L. H. S. \neq R. H. S.

Therefore, the correct statement is $(z+5)^{2}=z^{2}+10 z+25$
Question 9: Find and correct the errors in the statement
$3 x /(3 x+2)=1 / 2$
Answer 9: L. H. S. $=3 x /(3 x+2)$

1. H. S. $=1 / 2$

Therefore, L. H. S. \neq R. H. S.

Hence, $3 x /(3 x+2)=3 x /(3 x+2)$
Question 10:Find and correct the errors in the statement
$(7 x+5) / 5=7 x$
Answer 10: L. H. S. $=(7 x+5) / 5$
$=7 x / 5+5 / 5$
$=7 x / 5+1$

1. H. S. $=7 x$

Therefore, L. H. S. \neq R. H. S.
Hence, the correct statement is $(7 x+5) / 5=(7 x / 5)+1$
Question 11: Factorise $4 x^{2}-20 x+25$.
Answer 11: $4 x^{2}-20 x+25$
$=(2 x)^{2}-2 \times 2 x \times 5+(5)^{2}$
$=(2 x-5)^{2}$
[Using the identity $\left.a^{2}-2 a b+b^{2}=(a-b)^{2}\right]$

Question 12: Verify that

$(3 x+5 y)^{2}-30 x y=9 x^{2}+25 y^{2}$
Answer 12: L. H. S. $=(3 x+5 y)^{2}-30 x y$
$9 x^{2}+30 x y+25 y^{2}-30 x y=9 x^{2}+25 y^{2}$

1. H. S. $=9 x^{2}+25 y^{2}$

Therefore, L. H. S. = R. H. S. (verified)

Question 13: Verify that

$(11 p q+4 q)^{2}-(11 p q-4 q)^{2}=176 p q^{2}$
Answer 13: L. H. S. $=(11 p q+4 q)^{2}-(11 p q-4 q)^{2}$
$=121 p^{2} q^{2}+88 p q^{2}+16 q^{2}-\left(121 p^{2} q^{2}-88 p q^{2}+16 q^{2}\right)$
[Using identities $(a+b)^{2}=\left(a^{2}+2 a b+b^{2}\right)$
And $\left.(a-b)^{2}=\left(a^{2}-2 a b+b^{2}\right)\right]$
$=121 p^{2} q^{2}+88 p q^{2}+16 q^{2}-121 p^{2} q^{2}+88 p q^{2}-16 q^{2}$
$=88 p q^{2}+88 p q^{2}$
$=176 p^{2}$

1. H. S. $=176 \mathrm{pq}^{2}$

Therefore, L. H. S. = R. H. S. (verified)

Question 14: The area of a rectangle is $x^{2}+12 x y+27 y^{2}$ and its length is ($x+9 y$). Find the breadth of the rectangle.

Answer 14: Area / Length
$=\left(x^{2}+12 x y+27 y^{2}\right) /(x+9 y)$
$=x(x+9 y)+3 y(x+9 y) /(x+9 y)$
$=(x+3 y)(x+9 y) /(x+9 y)$
$=(x+3 y)$
Hence, the breadth of the rectangle is $(x+3 y)$
Question 15: Divide $15(y+3)\left(y^{2}-16\right)$ by $5\left(y^{2}-y-12\right)$.
Answer 15: On factorising $15(y+3)\left(y^{2}-16\right)$, we get $5 \times 3 \times(y+3)(y-4)(y+4)$.
On factorising $5\left(y^{2}-4 y+3 y-12\right)$
$=5(y-4)(y+3)$
Therefore, on dividing the first expression by second expression, we get
$15(y+3)\left(y^{2}-16\right) / 5(y+3)(y-4)$
$=3(y+4)$
Question 16: Factorise $2 a x^{2}+4 a x y+3 b x^{2}+2 a y^{2}+6 b x y+3 b y^{2}$.
Answer 16: $2 a x^{2}+4 a x y+3 b x^{2}+2 a y^{2}+6 b x y+3 b y^{2}$
$=2 a x^{2}+4 a x y+3 b x^{2}+6 b x y+2 a y^{2}+3 b y^{2}$
$=2 a x(x+2 y)+3 b x(x+2 y)+2 y^{2}(2 a+3 b)$
$=x(2 a+3 b)(x+2 y)+2 y^{2}(2 a+3 b)$
$=(2 a+3 b)\left[x(x+2 y)+2 y^{2}\right]$
$=(2 a+3 b)\left(x^{2}+2 y^{2}+2 x y\right]$
Question 17: Factorise $4 a^{2}-4 a b+b^{2}$
Answer 17: $4 a^{2}-4 a b+b^{2}$
$=(2 a)^{2}-2(2 a)(b)+b^{2}$
$=(2 a-b)^{2}$
[Using the identity $\left.a^{2}-2 a b+b^{2}=(a-b)^{2}\right]$
Question 18: Factorise $3 a^{2} b^{3}-27 a^{4} b$
Answer 18: $3 a^{2} b^{3}-27 a^{4} b$
$=3 a^{2} b\left(b^{2}-9 a^{2}\right)$
$=3 a^{2} b\left(b^{2}-(3 a)^{2}\right)$
$=3 a^{2} b(b+3 a)(b-3 a)$
[Using the identity $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$

Question 19: Factorise $\left(4 x^{2} / 9\right)-\left(9 y^{2} / 16\right)$

Answer 19: $\left(4 x^{2} / 9\right)-\left(9 y^{2} / 16\right)$
$=(2 x / 3)^{2}-(3 y / 4)^{2}$
$=[(2 x / 3)+(3 y / 4)][(2 x / 3)-(3 y / 4)]$
[Using the identity $\left.\left(a^{2}-b^{2}\right)=(a+b)(a-b)\right]$

Question 20: Factorise $1331 x^{3} y-11 y^{3} x$

Answer 20: $1331 x^{3} y-11 y^{3} x$
$=11 x y\left(121 x^{2}-y^{2}\right)$
$=11 x y\left[(11 x)^{2}-y^{2}\right]$
$=11 x y(11 x-y)(11 x+y)$
[Using the identity $\left.\left(a^{2}-b^{2}\right)=(a+b)(a-b)\right]$
Question 21: The area of a rectangle is $x^{2}+19 x-20$. Find the possible length and the breadth of the rectangle.

Answer 21: Area of Rectangle $=$ length \times breadth
$=x^{2}+19 x-20$
$=x^{2}+20 x-x-20$
$=x(x+20)-1(x+20)$
$=(x-1)(x+20)$
Thus, the length and the breadth are $(x-1)$ and $(x+20)$
Question 22: Perform the following division:
$\left(3 p q r-6 p^{2} q^{2} r^{2}\right) \div 3 p q$
Answer $\left(3 p q r-6 p^{2} q^{2} r^{2}\right) \div 3 p q$
$=\left(3 p q r-6 p^{2} q^{2} r^{2}\right) / 3 p q$
$=3 p q r(1-2 p q r) / 3 p q$
$=r(1-2 p q r)$
Question 23: Perform the following division:
$\left(x^{3} y\right) / 9-\left(x y^{3}\right) / 16$
Answer 23: $\left(x^{3} y\right) / 9-\left(x y^{3}\right) / 16$
$=x y\left(x^{2} / 9-y^{2} / 16\right)$
$=x y\left[(x / 3)^{2}-(y / 4)^{2}\right]$
$=x y(x / 3-y / 4)(x / 3+y / 4)$
[Using the identity $\left.\left(a^{2}-b^{2}\right)=(a+b)(a-b)\right]$
Question 24: The area of a rectangle is $x^{2}+7 x+12$. If the breadth is $(x+3)$, find its length.

Answer 24: Area of Rectangle $=$ Length \times Breadth
$\Rightarrow x^{2}+7 x+12=$ Length $\times(x+3)$
\Rightarrow Length $=\left(x^{2}+7 x+12\right) /(x+3)$
\Rightarrow Length $=\left(x^{2}+3 x+4 x+12\right) /(x+3)$
\Rightarrow Length $=x(x+3)+4(x+3) /(x+3)$
\Rightarrow Length $=(x+3)(x+4) /(x+3)$
\Rightarrow Length $=(x+4)$
Question 25: The area of a circle is given by the expression $\pi x^{2}+6 \pi x+9 \pi$. Find the radius of the circle.

Answer 25: Area of a circle $=\pi r^{2}$
Where radius $=r$

Then, $\pi x^{2}+6 \pi x+9 \pi=\pi r^{2}$
$\Rightarrow \pi\left(x^{2}+6 x+9\right)=\pi r^{2}$
$\Rightarrow\left(x^{2}+6 x+9\right)=r^{2}$
$\Rightarrow r^{2}=\left(x^{2}+2 \cdot x \cdot 3+3^{2}\right)$
$\Rightarrow r^{2}=(x+3)^{2}$
Therefore, $r=x+3$
Question 26: The sum of the first n natural numbers is given by the expression $\mathrm{n}^{2} / 2+$ $\mathrm{n} / 2$. Factorise this expression.

Answer 26: Given that the sum of the first n natural number $=n^{2} / 2+n / 2=n / 2(n+1)$
Question 27: The sum of $(x+5)$ observations is $x^{4}-625$. Find the mean of the observations.

Answer 27: Mean $=\left(x^{4}-625\right) /(x+5)$
Mean $=\left[\left(x^{2}\right)^{2}-(25)^{2}\right] /(x+5)$
Mean $=\left[\left(x^{2}+25\right)\left(x^{2}-5^{2}\right)\right] /(x+5)$
Mean $=\left[\left(x^{2}+25\right)(x-5)(x+5)\right] /(x+5)$
Mean $=\left(x^{2}+25\right)(x-5)$
Question 28: The height of a triangle is $x^{4}+y^{4}$ and its base is $14 x y$. Find the area of the triangle.

Answer 28: Area of the triangle $=1 / 2 \times$ height \times base
\Rightarrow Area $=1 / 2 \times\left(x^{4}+y^{4}\right) \times(14 x y)$
\Rightarrow Area $=7 x y\left(x^{4}+y^{4}\right)$
Question 29: The cost of a chocolate is Rs $(x+y)$ and Rohit bought ($x+y$) chocolates. Find the total amount paid by him in terms of x. If $x=10$, find the amount paid by him.

Answer 29: The cost of chocolate $=$ Rs ($x+y$)
No. of chocolates Rohit bought $=(x+y)$
Therefore, total amount he paid $=R s(x+y)(x+y)$
$=\operatorname{Rs}(x+y)^{2}$
If $x=10$, then Rs $(10+y)^{2}$
Question 30: The base of a parallelogram is ($2 x+3$ units) and the corresponding height is ($2 x-3$ units). Find the area of the parallelogram in terms of x. What will be the area of the parallelogram of $x=30$ units?

Answer: Area of Parallelogram $=$ Base \times Height
Therefore, Area $=(2 x+3)(2 x-3)$
Area $=(2 x)^{2}-(3)^{2}=4 x^{2}-9$

Putting $x=30$ units, we get
Area $=4 \times(30)^{2}-9=4 \times 900-9=3600-9=3591$ sq. units.
Question 31: The radius of a circle is $7 a b-7 b c-14 a c$. Find the circumference of the circle. ($\pi=22 / 7$)

Answer 31: The circumference of the circle $=2 \pi r$

Therefore, Circumference $=2 \pi(7 a b-7 b c-14 a c)$
Circumference $=2 \times 22 / 7(7 a b-7 b c-14 a c)$
$=2 \times 22(a b-b c-2 a c)$
$=44(a b-b c-2 a c)$
Question 32: Factorise $p^{4}+q^{4}+p^{2} q^{2}$
Answer 32: $p^{4}+q^{4}+p^{2} q^{2}$
$=\left(p^{2}\right)^{2}+\left(q^{2}\right)^{2}+2 p^{2} q^{2}-p^{2} q^{2}$
$=\left(p^{2}+q^{2}\right)^{2}-(p q)^{2}$
[Using the identity $\left.a^{2}+b^{2}+2 a b=(a+b)^{2}\right]$
$=\left(p^{2}+q^{2}+p q\right)\left(p^{2}+q^{2}-p q\right)$
[Using the identity $\left.a^{2}-b^{2}=(a+b)(a-b)\right]$
Question 33: Factorise the expression and divide them as directed:
$\left(2 x^{3}-12 x^{2}+16 x\right) \div(x-2)(x-4)$
Answer 33: $\left(2 x^{3}-12 x^{2}+16 x\right) /[(x-2)(x-4)]$
$=\left[2 x\left(x^{2}-6 x+8\right)\right] /[(x-2)(x-4)]$
$=\left[2 x\left(x^{2}-2 x-4 x+8\right)\right] /[(x-2)(x-4)]$
$=[2 x\{x(x-2)-4(x-2)\}] /[(x-2)(x-4)]$
$=[2 x(x-4)(x-2)] /[(x-2)(x-4)]$
$=2 x$
Question 34: Factorise $x^{2}+1 / x^{2}+2-3 x-3 / x$
Answer 34: $x^{2}+1 / x^{2}+2-3 x-3 / x$
$\Rightarrow x^{2}+1 / x^{2}+2-3\left(x+1 / x^{2}\right)$
$\Rightarrow(x+1 / x)^{2}-3\left(x+1 / x^{2}\right)$
[Using the identity $\left.a^{2}+b^{2}+2 a b=(a+b)^{2}\right]$
$\Rightarrow(x+1 / x)(x+1 / x-3)$

