Important Questions Class 8 Maths Chapter 5 Square and Square Roots

Question 1:Show that the sum of two consecutive natural numbers is $\mathbf{1 3}^{2}$.
Answer 1:Let $2 \mathrm{n}+1=13$
So, $n=6$
So, $(2 n+1)^{2}=4 n^{2}+4 n+1$
$=\left(2 n^{2}+2 n\right)+\left(2 n^{2}+2 n+1\right)$
Substitute $\mathrm{n}=6$,

$$
\begin{aligned}
(13)^{2} & =\left(2 \times 6^{2}+2 \times 6\right)+\left(2 \times 6^{2}+2 \times 6+1\right) \\
& =(72+12)+(72+12+1) \\
& =84+85
\end{aligned}
$$

Question 2: What would be the square root of the number 625 using the identity $(a+b)^{2}=a^{2}+b^{2}+2 a b ?$

Answer 2: (625) ${ }^{2}$
$=(600+25)^{2}$
$=600^{2}+2 \times 600 \times 25+25^{2}$
$=360000+30000+625$
$=390625$

Question 4:Use the following identity and find the square of 189.
$(a-b)^{2}=a^{2}-2 a b+b^{2}$
Answer 4: $189=(200-11) 2$

$$
\begin{aligned}
& =40000-2 \times 200 \times 11+112 \\
& =40000-4400+121
\end{aligned}
$$

$$
=35721
$$

Question 5: Find the smallest whole number from which 1008 should be multiplied in order to obtain a perfect square number. Also, find out the square root of the square number so obtained.

Answer 5:

Let us factorise the number 1008.

2	1008
2	504
2	252
2	126
3	63
3	21
7	7

$1008=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 7$

$$
=(2 \times 2) \times(2 \times 2) \times(3 \times 3) \times 7
$$

Here, 7 cannot be paired.
Therefore, we will multiply 1008 by 7 to get a perfect square.
New number so obtained $=1008 \times 7=7056$

Now, let us find the square root of 7056

2\|7056	
2	3528
2	1764
2	882
3	441
3	147
7	49
7	7
	1

$7056=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 7 \times 7$
$7056=(2 \times 2) \times(2 \times 2) \times(3 \times 3) \times(7 \times 7)$
$7056=2^{2} \times 2^{2} \times 3^{2} \times 7^{2}$
$7056=(2 \times 2 \times 3 \times 7)^{2}$
Therefore;
$\sqrt{ } 7056=2 \times 2 \times 3 \times 7=84$
Question 6: The sides of a right triangle whose hypotenuse is 17 cm are \qquad and \qquad .

Answer 6:

For each natural number, $m>1,2 m, m 2-1$ and $m 2+1$ form a Pythagorean triplet.
Now,
$m^{2}+1=(2 m)^{2}+(m 2-1)^{2}$
Where,

```
\[
m^{2}+1=17
\]
\[
m^{2}=17-1
\]
\[
m^{2}=16
\]
```

$m=\sqrt{ } 16$
$m=4$

Then,
$2 \mathrm{~m}=2 \times 4$
$=8$
And,
$m^{2}-1=4^{2}-1$
= 16 - -1
$=15$
Question 7: $\sqrt{ }(1.96)=$ \qquad .

Answer 7: We have,
$=\sqrt{ }(1.96)$
$=\sqrt{ }(196 / 100)$
$=\sqrt{ }((14 \times 14) /(10 \times 10))$
$=\sqrt{ }(142 / 102)$
$=14 / 10$
$=1.4$
Question 8:If m is the required square of a natural number given by n, then n is
(a) the square of m
(b) greater than m
(c) equal to m
(d) $\sqrt{ } \mathrm{m}$

Answer 8: $\sqrt{ } \mathrm{m}$

$$
\mathrm{n}^{2}=\mathrm{m}
$$

Then,

$$
=\mathrm{n}=\sqrt{ } \mathrm{m}
$$

Question 9:There are \qquad perfect squares between 1 and 100.

Answer 9: There are 8 perfect squares between 1 and 100.
$2 \times 2=4$
$3 \times 3=9$
$4 \times 4=16$
$5 \times 5=25$
$6 \times 6=36$
$7 \times 7=49$
$8 \times 8=64$
$9 \times 9=81$
Question 10: By what least number should the given number be divided to get a perfect square number? In each of the following cases, find the number whose square is the new number 1575.

Answer 10: A method for determining the prime factors of a given number, such as a composite number, is known as prime factorisation.

Given 1575,
Resolve 1575 into prime factors, we get
$1575=3 \times 3 \times 5 \times 5 \times 7=\left(3^{2} \times 5^{2} \times 7\right)$
To obtain a perfect square, we have to divide the above equation by 7
Then we get, $3380=3 \times 3 \times 5 \times 5$
New number $=(9 \times 25)=\left(3^{2} \times 5^{2}\right)$
Taking squares on both sides of the above equation, we get
\therefore New number $=(3 \times 5)^{2}=(15)^{2}$

Therefore, the new number is a square of 15
Question 11:Show that each of the numbers is a perfect square. In each case, find the number whose square is the given number:

7056

Answer 11: 7056,

A perfect square is always expressed as a product of pairs of prime factors.
Resolving 7056 into prime factors, we obtain

$$
\begin{aligned}
7056 & =11 \times 539 \\
& =12 \times 588 \\
& =12 \times 7 \times 84 \\
& =84 \times 84 \\
& =(84)^{2}
\end{aligned}
$$

Thus, 84 is the number whose square is 5929
Therefore,7056 is a perfect square.
Question 12: Without adding, find the sum of the following:
$(1+3+5+7+9+11+13+15+17+19+21+23)$
Answer 12: $(1+3+5+7+9+11+13+15+17+19+21+23)$

As per the given property of perfect square, for any natural number n, we have some of the first n odd natural numbers $=\mathrm{n}^{2}$

But here $\mathrm{n}=12$

By applying the above the law, we get
thus, $(1+3+5+7+9+11+13+15+17+19+21+23)=12^{2}=144$
Question 13: Using the formula $(a-b)^{2}=\left(a^{2}-2 a b+b^{2}\right)$, evaluate:
$(196)^{2}$

Answer 13: (196) ${ }^{2}$
We have $(a-b)^{2}=\left(a^{2}-2 a b+b^{2}\right)$
$(196)^{2}$ can be written as 200-4
So here, $a=200$ and $b=4$

Using the formula,

$$
(200-4)^{2}=\left(200^{2}-2 \times 200 \times 4+4^{2}\right)
$$

On simplifying, we get
$(200-4)^{2}=(40000-1600+16)$
$(196)^{2}=38416$
Question 14: By what least number should the number be divided to obtain a number with a perfect square? In this, in each case, find the number whose square is the new number 4851.

Answer 14: The number is a perfect square if and only if the prime factorization creates pairs; it is not exactly a perfect square if it is not paired up.

Given 4851,
Resolving 4851 into prime factors, we obtain

$$
\begin{aligned}
4851= & 3 \times 3 \times 7 \times 7 \times 11 \\
& =(32 \times 72 \times 11)
\end{aligned}
$$

To obtain a perfect square, we need to divide the above equation by
11
we obtain, $9075=3 \times 3 \times 7 \times 7$
The new number $=(9 \times 49)$

$$
=\left(3^{2} \times 7^{2}\right)
$$

Taking squares on both sides from the above equation, we obtain
\therefore The new number $=(3 \times 7)^{2}$

$$
=(21)^{2}
$$

Therefore, the new number is a square of 21
Question 15: By what least number should the number be divided to obtain a perfect square number? In such a case, find the number whose square is the new number 4500.

Answer 15: The number is exactly a perfect square if and only if the prime factorization creates pairs; or else, it is not a perfect square number.

As per the given 4500,
Resolving 4500 into prime factors, we obtain

$$
\begin{aligned}
3380 & =2 \times 2 \times 3 \times 3 \times 5 \times 5 \times 5 \\
& =\left(2^{2} \times 3^{2} \times 5^{2} \times 5\right)
\end{aligned}
$$

To obtain a perfect square, we need to divide the above equation by 5
Then we obtain, $4500=2 \times 2 \times 3 \times 3 \times 5 \times 5$
The new number $=(4 \times 9 \times 25)$

$$
=\left(2^{2} \times 3^{2} \times 5^{2}\right)
$$

Taking squares on both sides from the above equation, we obtain
\therefore The new number $=(2 \times 3 \times 5)^{2}$

$$
=(30)^{2}
$$

Therefore, the new number is a square of 30
Question 16: Write a Pythagorean triplet whose one member is:
(i) 6
(ii) 14
(iii) 16
(iv) 18

Answer 16: Any natural number m, 2m, m2-1, m2+1 is a Pythagorean triplet.
(i) $2 \mathrm{~m}=6$

$$
\begin{aligned}
& m=6 / 2 \\
& m=3
\end{aligned}
$$

$m^{2}-1=3^{2}-1=9-1=8$
$m^{2}+1=3^{2}+1=9+1=10$
Thus, $(6,8,10)$ is a Pythagorean triplet.
(ii) $2 m=14$
$\Rightarrow m=14 / 2=7$
$m^{2}-1=7^{2}-1=49-1=48$
$m^{2}+1=7^{2}+1=49+1=50$
Thus, $(14,48,50)$ is not a Pythagorean triplet.
(iii) $2 m=16$
$\Rightarrow m=16 / 2=8$
$m^{2}-1=8^{2}-1=64-1=63$
$m^{2}+1=8^{2}+1=64+1=65$
Thus, $(16,63,65)$ is a Pythagorean triplet.
(iv) $2 m=18$
$\Rightarrow m=18 / 2=9$
$m^{2}-1=9^{2}-1=81-1=80$
$m^{2}+1=9^{2}+1=81+1=82$
Thus, $(18,80,82)$ is a Pythagorean triplet.
Question 17: How many numbers lie between the squares of the following numbers?
(i) 12 and 13
(ii) 25 and 26
(iii) 99 and 100

Answer 17: As we know, between n^{2} and $(n+1)^{2}$, the number of non-perfect square numbers are 2 n .
(i) Between 122 and 132, there are $2 \times 12=24$ natural numbers.
(ii) Between 252 and 262, there are $2 \times 25=50$ natural numbers.
(iii) Between 992 and 1002, there are $2 \times 99=198$ natural numbers.

Question 18: 2025 plants are to be planted in a garden in a way that each of the rows contains as many plants as the number of rows. Find the number of rows and the number of plants in each row.

Answer 18:

Let the number of rows be x .

Thus, the number of plants in each row $=x$.
Total many contributed by all the students $=x \times x=x^{2}$
Given, $x^{2}=$ Rs. 2025
$x 2=3 \times 3 \times 3 \times 3 \times 5 \times 5$
$\Rightarrow \mathrm{x} 2=(3 \times 3) \times(3 \times 3) \times(5 \times 5)$
$\Rightarrow x 2=(3 \times 3 \times 5) \times(3 \times 3 \times 5)$
$\Rightarrow x 2=45 \times 45$
$\Rightarrow x=\sqrt{ }(45 \times 45)$
$\Rightarrow x=45$
Therefore,

Number of rows $=45$
Number of plants in each row $=45$
Question 19: The digit at the one's place of the number 572 is \qquad .

Answer 19: The digit at the one's place of the number 572 is 9 .

We see that 3 or 7 at the unit's place ends in 9 .
$=572$
$=57 \times 57$

Question 20: Give a reason to show that the number given below is a perfect square: 5963

Answer 20:The unit digit of the square numbers will be $0,1,4,5,6$, or 9 if we examine the squares of numbers from 1 to 10 . Thus, the unit digit for all perfect squares will be $0,1,4,5$, 6 , or 9 , and none of the square numbers will end in $2,3,7$, or 8 .

Given 5963
We have the property of a perfect square, i.e. a number ending in 3 is never a perfect square.

Therefore the given number 5963 is not a perfect square.

