Important Questions Class 8 Maths Chapter 8 Algebraic Expressions and Identities

Question 1. Find the terms and their coefficients for each of the following expressions.

(i)
$$5xyz^2 - 3zy$$

(ii)
$$1 + x + x^2$$

(iii)
$$4x^2y^2 - 4x^2y^2z^2 + z^2$$

$$(v) x/2 + y/2 - xy$$

$$(vi) 0.3a - 0.6ab + 0.5b$$

Answer 1. The terms and coefficients are given below,

Terms	s Coefficient
(i) 5xyz², -3zy	5, -3
(ii) 1, x, x ²	1, 1, 1
(iii) 4x²y², -4x²y²z², z²	4, -4, 1
(iv) 3, -pq, qr, -rp	3, -1, 1, -1
(v) x/2, y/2, -xy	1/2, 1/2, -1
(vi) 0.3a, -0.6ab, 0.5b	0.3, -0.6, 0.5

Question 2. Classify the following polynomials as monomials, binomials, and trinomials. Also, state the

polynomials do not fall in any of these three categories?

$$x + y$$
, 1000, $x + x^2 + x^3$, $7 + y + 5x$, $2y - 3y^2$, $2y - 3y^2 + 4y^3$, $5x - 4y + 3xy$, $4z - 15z^2$, $ab + bc + cd + da$, pqr ,

$$p^2q + pq^2$$
, $2p + 2q$,

Answer 2. The classified terms are given below,

Monomials- 1000, pqr

Binomials- x + y, $2y - 3y^2$, $4z - 15z^2$, $p^2q + pq^2$, 2p + 2q

Trinomials- $x + x^2 + x^3$, 7 + y + 5x, $2y - 3y^2 + 4y^3$, 5x - 4y + 3xy

Polynomials that do not fall in any of these categories are x + y, $x + x^2 + x^3$, ab + bc + cd + da

Question 3. Add the following.

(ii)
$$a - b + ab$$
, $b - c + bc$, $c - a + ac$

(iii)
$$2p^2q^2 - 3pq + 4$$
, $5 + 7pq - 3p^2q^2$

(iv)
$$l^2 + m^2$$
, $m^2 + n^2$, $n^2 + l^2$, $2lm + 2mn + 2nl$

$$= 0$$

(ii)
$$(a - b + ab) + (b - c + bc) + (c - a + ac)$$

 $= a - b + ab + b - c + bc + c - a + ac$
 $= a - a - b + b + ab - c + c + bc + ac$
 $= ab + bc + ac$

(iii)
$$(2p^2q^2 - 3pq + 4) + (5 + 7pq - 3p^2q^2)$$

 $= 2p^2q^2 - 3pq + 4 + 5 + 7pq - 3p^2q^2$
 $= 2p^2q^2 - 3p^2q^2 + 7pq - 3pq + 4 + 5$
 $= -1p^2q^2 + 4pq + 9$
 $= 4pq + 9 - p^2q^2$

(iv)
$$(l^2 + m^2) + (m^2 + n^2) + (n^2 + l^2) + (2lm + 2mn + 2nl)$$

$$= |^{2} + m^{2} + m^{2} + n^{2} + n^{2} + |^{2} + 2lm + 2mn + 2nl$$

$$= |^{2} + |^{2} + m^{2} + m^{2} + n^{2} + n^{2} + 2lm + 2mn + 2nl$$

$$= 2|^{2} + 2m^{2} + 2n^{2} + 2lm + 2mn + 2nl$$

$$= 2(|^{2} + m^{2} + n^{2} + lm + mn + nl)$$

Question 4. Subtract the following.

(i)
$$4a - 7ab + 3b + 12$$
 from $12a - 9ab + 5b - 3$

(ii
$$3xy + 5yz - 7zx$$
 from $5xy - 2yz - 2zx + 10xyz$

(iii)
$$4p^2q - 3pq + 5pq^2 - 8p + 7q - 10$$
 from $18 - 3p - 11q + 5pq - 2pq2 + 5p^2q$

Answer 4.

(i)
$$(12a - 9ab + 5b - 3) - (4a - 7ab + 3b + 12)$$

 $= 12a - 9ab + 5b - 3 - 4a + 7ab - 3b - 12$
 $= 12a - 4a - 9ab + 7ab + 5b - 3b - 3 - 12$
 $= 8a - 2ab + 2b - 15$
 (ii) $(5xy - 2yz - 2zx + 10xyz) - (3xy + 5yz - 7zx)$
 $= 5xy - 2yz - 2zx + 10xyz - 3xy - 5yz + 7zx$
 $= 5xy - 3xy - 2yz - 5yz - 2zx + 7zx + 10xyz$
 $= 2xy - 7yz + 5zx + 10xyz$
 (iii) $(18 - 3p - 11q + 5pq - 2pq2 + 5p^2q) - (4p^2q - 3pq + 5pq^2 - 8p + 7q - 10)$
 $= 18 - 3p - 11q + 5pq - 2pq2 + 5p^2q - 4p^2q + 3pq - 5pq^2 + 8p - 7q + 10$
 $= 18 + 10 - 3p + 8p - 11q - 7q + 5pq + 3pq - 2pq2 - 5pq^2 + 5p^2q - 4p^2q$
 $= 28 + 5p - 18q + 8pq - 7pq^2 + p^2q$

Question 5. Multiply the following.

(i)
$$-7pq^2r^3$$
, $-13p^3q^2r$

(ii)
$$3x^2y^2z^2$$
, $17xyz$

(v)
$$(pq - 2r)$$
, $(pq - 2r)$

(vi)
$$(3/2p^2 + 2/3q^2)$$
, $(2p^2 - 3q^2)$

Answer 5. (i) (
$$-\,7pq^2r^3$$
) x ($-\,13p^3q^2r$)

(ii)
$$(3x^2y^2z^2) x (17xyz)$$

$$= 51x^3y^3z^3$$

(iii)
$$(15xy^2) \times (17yz^2)$$

$$= 255xy^3z^2$$

(iv)
$$(-5a^2bc) x (11ab) x (13abc^2)$$

(v)
$$(pq-2r)x(pq-2r)$$

$$= pq (pq - 2r) - 2r(pq - 2r)$$

$$= p^2q^2 - 2pqr - 2rpq + 4r^2$$

$$= p^2q^2 - 4pqr + 4r^2$$

(vi) (
$$3 p^2 + 2 q^2$$
) x ($2p^2 - 3q^2$)

$$= 3p^2 \times 2p^2 - 3 p^2 \times 3q^2 + 2q^2 \times 2p^2 - 2q^2 \times 3q^2$$

$$= 6P4 - 9p^2q^2 + 4q^2p^2 - 6q4$$

$$= 3P4 - 9p^{2}q^{2} + 4q^{2}p^{2} - 2q4$$

$$2 \qquad 3$$

Question 6. Which term is the like term similar to 24a2bc?

(a)
$$13 \times 8a \times 2b \times c \times a$$

(b)
$$8 \times 3 \times a \times b \times c$$

(c)
$$3 \times 8 \times a \times b \times c \times c$$

(d)
$$3 \times 8 \times a \times b \times b \times c$$

Answer 6. Option (a)

Explanation: To find out the similar term as 24a²bc, let us find the product of each of the equations,

1.
$$13 \times 8a \times 2b \times c \times a = 208a^2bc$$

$$2.8 \times 3 \times a \times b \times c = 24abc$$

$$3.3 \times 8 \times a \times b \times c \times c = 24abc^2$$

$$4.3 \times 8 \times a \times b \times b \times c = 24ab^2c$$

Hence, we can get that option (a) is correct.

Question 7. Which of the following is an identity?

(a)
$$(p + q)^2 = p^2 + q^2$$

(b)
$$p^2 - q^2 = (p - q)^2$$

(c)
$$p^2 - q^2 = p^2 + 2pq - q^2$$

(d)
$$(p + q)^2 = p^2 + 2pq + q^2$$

Answer 7. Option (d)

Explanation: The equation $(p + q)^2 = p^2 + 2pq + q^2$ follows the first standard algebraic identity

 $(a + b)^2 = a^2 + 2ab + b^2$. The rest of the other options do not follow any of the standard identities. Hence option (d) is correct.

Question 8. Fill in the blanks.

(a)
$$(x + a) (x + b) = x^2 + (a + b)x +$$

			_					
/h	1) The	product	of two	tarme	with	like signs	ie a	term.
(N	<i>'</i>	product	OI LVVO	(CIIII)	AAICII	like signs	13 a	telli.

(c) The product of two terms with unlike signs is a _____ term.

(d)
$$(a - b)$$
 = $a^2 - 2ab + b^2$

(e)
$$a^2 - b^2 = (a + b)$$
_____.

(f)
$$(a - b)^2 + \underline{} = a^2 - b^2$$

(g)
$$(a + b)^2 - 2ab = ____ + ____$$

- (h) The product of two polynomials is a _____
- (i) The coefficient in 37abc is _____.
- (j) Number of terms in the expression a2 + bc × d is _____

Answer 8.

(a) ab

As per the standard identity 4, $(x + a)(x + b) = x^2 + (a + b)x + ab$

- (b) Positive
- (c) Negative

(d)
2
 or $(a - b)^2$

As per standard identity 2, $(a - b)^2 = a^2 - 2ab + b^2$

As per standard identity 3, $(a + b) (a - b) = a^2 - b^2$

(f)
$$2ab - 2b^2$$

Let us solve the equation with x in the blank space. As per identity 2, $(a - b)^2 = a^2 - 2ab + b^2$.

Hence,
$$a^2 - 2ab + b^2 + x = a^2 - b^2$$

$$x = a^2 - b^2 - a^2 + 2ab - b^2$$

$$x = 2ab - 2b^2$$

(g) $a^2 + b^2$

Using Identity 1 (a + b)² = $a^2 + 2ab + b^2$,

$$(a + b)^2 - 2ab = a^2 + 2ab + b^2 - 2ab = a^2 + b^2$$

- (h) Polynomial
- (i) -37
- (j) 2

Question 9. Solve the below using correct identities.

- $(a) (48)^2$
- (b) $181^2 19^2$
- (c) 497×505
- (d) 2.07×1.93

Answer 9.

$$(a) (48)^2$$

$$=(50-2)^2$$

As
$$(a - b)^2 = a^2 - 2ab + b^2$$
, hence

$$(50-2)^2 = (50)^2 - 2 \times 50 \times 2 + (2)^2$$

$$= 2500 - 200 + 4$$

$$= 2300 + 4$$

(b) As
$$a^2 - b^2 = (a - b) (a + b)$$

$$181^2 - 19^2 = (181 - 19)(181 + 19)$$

$$= 162 \times 200$$

$$= 32400$$

(c) By using the identity $(x + a)(x + b) = x^2 + (a + b)x + ab$

$$497 \times 505 = (500 - 3)(500 + 5)$$

$$= 500^2 + (-3 + 5) \times 500 + (-3) (5)$$

$$= 250000 + 1000 - 15$$

= 250985

(d) As
$$(a + b) (a - b) = a^2 - b^2$$

$$2.07 \times 1.93 = (2 + 0.07) (2 - 0.07)$$

$$= 2^2 - 0.07^2$$

= 3.9951

Question 10. The length of a rectangular box is (x + 9y) and the area is $x^2 + 12xy + 27y^2$. Find the breadth.

Answer 10. Area of a rectangle = length x breadth, hence breadth = area / length.

breadth = x^2 + 12xy + 27 y^2

$$(x + 9y)$$

$$= x^2 + 9xy + 3xy + 27y^2$$

(x + 9y)

$$= x (x + 9y) + 3y (x + 9y)$$

$$(x + 9y)$$

breadth = x + 3y

Question 11. With the help of identity $(x + a) (x + b) = x^2 + (a + b) x + ab$, find the following products.

(a)
$$(x + 3) (x + 7)$$

(b)
$$(4x + 5) (4x + 1)$$

(c)
$$(4x - 5) (4x - 1)$$

(d)
$$(4x + 5) (4x - 1)$$

(e)
$$(2x + 5y) (2x + 3y)$$

(f)
$$(2a^2+9)(2a^2+5)$$

(g)
$$(xyz - 4) (xyz - 2)$$

Answer 11.

1.
$$(x + 3)(x + 7)$$

$$= x^2 + (3 + 7) x + (3 x 7)$$

$$= x^2 + 10x + 21$$

$$1.(4x + 5)(4x + 1)$$

$$= 16x^2 + (5 + 1) 4x + (5 x 1)$$

$$= 16x^2 + 24x + 5$$

(c)
$$(4x-5)(4x-1)$$

$$= 16x^2 + (-5 - 1)4x + (-5x - 1)$$

$$= 16x^2 - 24x + 5$$

(d)
$$(4x + 5) (4x - 1)$$

$$= 16x^2 + (5 + (-1))4x + (5 x (-1))$$

$$= 16x^2 + 16x - 5$$

(e)
$$(2x + 5y) (2x + 3y)$$

$$= 4x^2 + (5y + 3y)2x + (5y x 3y)$$

$$= 4x^2 + 16xy + 15y^2$$

(f)
$$(2a^2+9)(2a^2+5)$$

$$= 4a4 + (9 + 5)2a^2 + (9 \times 5)$$

$$= 4a4 + 28a^2 + 45$$

(g)
$$(xyz - 4) (xyz - 2)$$

$$= x^2y^2z^2 + (-4-2)xyz + (-4x-2)$$

$$= x^2y^2z^2 - 6xyz + 8$$

Question 12. The exponents of the variables in a polynomial are always

- (a) Integers
- (b) Positive integers
- (c) Non-negative integers
- (d) Non-positive integers

Answer 12. (c) Non-negative integers

Explanation: A polynomial will have a non-zero coefficient and variables having non-negative integers as exponents. For example: a + b + r + q, 3ab, 5xyz - 10, 2a + 3b + 7z, etc.

Question 13. The product of a binomial and monomial is a

- (a) Monomial
- (b) Binomial
- (c) Trinomial
- (d) None of these

Answer 13. (b) Binomial

Explanation: This can be demonstrated through an example below,

$$x (y + z) = xy + xz$$

This expression contains two terms, x is a monomial and (y + z) is a binomial.

The product of multiplying these terms results in a binomial product xy + xz.

Question 14. Using identities, find products for the below.

- (a) 71²
- (b) 99²
- (c) 102²
- (d) 998²
- (e) 5.2²

- (f) 297×303
- (g) 78 × 82
- (h) 8.9²
- (i) 10.5 × 9.5

Answer 14.

$$1.71^2 = (70 + 1)^2$$

$$= 70^2 + 2 (70 \times 1) + 1^2$$

= 4900 + 140 + 1

= 5041

1.
$$99^2 = (100 - 1)^2$$

 $= 100^2 - 2 (100 \times 1) + 1^2$

= 10000 - 200 + 1

= 9801

(c)
$$102^2 = (100 + 2)^2$$

 $= 100^2 + 2 (100 \times 2) + 2^2$

= 10000 + 400 + 4

= 10404

(d)
$$998^2 = (1000 - 2)^2$$

 $= 1000^2 - 2 (1000 \times 2) + 2^2$

= 1000000 - 4000 + 4

= 996004

(e)
$$5.2^2 = (5 + 0.2)^2$$

 $= 5^2 + 2 (5 \times 0.2) + 0.2^2$

= 25 + 2 + 0.04

Identity applied (a + b)² = $a^2 + 2ab + b^2$

Identity applied $(a - b)^2 = a^2 - 2ab + b^2$

Identity applied (a + b)² = $a^2 + 2ab + b^2$

Identity applied $(a - b)^2 = a^2 - 2ab + b^2$

Identity applied $(a + b)^2 = a^2 + 2ab + b^2$

= 27.04

(f)
$$297 \times 303 = (300 - 3)(300 + 3)$$

b²

(f) $297 \times 303 = (300 - 3)(300 + 3)$ Identity applied $(a + b)(a - b) = a^2 - a^2 -$

 $=300^2-3^2$

= 90000 - 9

= 89991

(g)
$$78 \times 82 = (80 - 2)(80 + 2)$$

b²

Identity applied $(a + b)(a - b) = a^2 -$

 $= 80^2 - 2^2$

= 6400 - 4

= 6396

(h)
$$8.9^2 = (9.0 - 0.1)^2$$

Identity applied $(a - b)^2 = a^2 - 2ab + b^2$

$$= 9.0^2 - 2 (9.0 \times 0.1) + 0.1^2$$

= 81 - 1.8 + 0.01

= 79.21

(i)
$$10.5 \times 9.5 = (10 + 0.5)(10 - 0.5)$$

Identity applied (a + b) (a - b) = $a^2 - b^2$

$$= 10^2 - 0.5^2$$

= 100 - 0.25

= 99.75

Question 15. The Coefficient of y in the term -y is

3

$$(a) - 1$$

$$(b) - 3$$

$$(c) - 1$$

3

(d) 1

3

Answer 15. (c) - 1

3

Explanation: Coefficient is defined as the numerical factor of a term.

Hence, the numerical factor/ coefficient of the term -y is -1

3 3

Question 16.Obtain the volume of rectangular boxes with the following length, breadth and height

respectively.

- (a) 5a, 3a², 7a4
- (b) 2p, 4q, 8r
- (c) xy, 2x²y, 2xy²
- (d) a, 2b, 3c

Answer 16. The volume of a rectangular box is the product of its length,

breadth and height, i.e Volume = length x breadth x height.

Volumes are calculated as below,

(a) length = 5a, breadth = 3a², height = 7a4

Volume = $5a \times 3a^2 \times 7a4$

= 105a7

(b) length = 2p, breadth = 4q, height = 8r

Volume = $2p \times 4q \times 8r$

- = 64pqr
- (c) length = xy, breadth = $2x^2y$, height = $2xy^2$

Volume = $xy x 2x^2y x 2xy^2$

$$= 4x4y4$$

(d) length = a, breadth = 2b, height = 3c

Volume = a x 2b x 3c

= 6abc

Question 17. State whether the following are True (T) or False (F):

(a)
$$(a + b)^2 = a^2 + b^2$$

(b)
$$(a - b)^2 = a^2 - b^2$$

(c)
$$(a + b) (a - b) = a^2 - b^2$$

- (d) The product of two negative terms is a negative term.
- (e) The product of one negative and one positive term is a negative term.
- (f) The coefficient of the term $-6x^2y^2$ is -6.
- (g) p²q + q²r + r²q is a binomial
- (h) An equation is true for all values of its variables.

Answer 17.

(a) False.
$$(a + b)^2 = a^2 + 2ab + b^2$$

(b) False.
$$(a - b)^2 = a^2 - 2ab + b^2$$

- (c) True.
- (d) False. The product of two negative terms is positive.
- (e) True
- (f) True
- (g) False. The equation $p^2q + q^2r + r^2q$ consists of three terms; hence it is a trinomial.
- (h) False. An equation is not true for all values of its variables. For example : 4x + 2 = 10 is true, only for x = 2.

Question 18. Show that LHS = RHS for the below equations.

(a)
$$(3x + 7)^2 - 84x = (3x - 7)^2$$

(b)
$$(9p - 5q)^2 + 180pq = (9p + 5q)^2$$

(c)
$$(4pq + 3q)^2 - (4pq - 3q)^2 = 48pq^2$$

(d)
$$(a - b) (a + b) + (b - c) (b + c) + (c - a) (c + a) = 0$$

Answer 18.

(a) LHS =
$$(3x + 7)^2 - 84x$$

= $(3x)^2 + 2(3x \times 7) + 7^2 - 84x$
= $9x^2 + 42x + 49 - 84x$
= $9x^2 - 42x + 49$
RHS = $(3x - 7)^2$
= $(3x)^2 - 2(3x \times 7) + 7^2$
= $9x^2 - 42x + 49$

(b) LHS =
$$(9p - 5q)^2 + 180pq$$

= $(9p)^2 - 2(9p \times 5q) + (5q)^2 + 180pq$
= $81p^2 + 90pq + 25q^2$
RHS = $(9p + 5q)^2$
= $(9p)^2 + 2(9p \times 5q) + (5q)^2$
= $81p^2 + 90pq + 25q^2$

(c) LHS =
$$(4pq + 3q)^2 - (4pq - 3q)^2$$

= $(4pq)^2 + 2(4pq \times 3q) + (3q)^2 - ((4pq)^2 - 2(4pq \times 3q) + (3q)^2)$
= $16p^2q^2 + 24pq^2 + 9q^2 - 16p^2q^2 + 24pq^2 - 9q^2$

$$=48pq^2$$

$$RHS = 48pq^2$$

Hence LHS = RHS

(d) LHS =
$$(a - b) (a + b) + (b - c) (b + c) + (c - a) (c + a)$$

= $a^2 + ab - ba - b^2 + b^2 + bc - cb - c^2 + c^2 + ca - ac - a^2$
= 0

$$RHS = 0$$

Hence LHS = RHS

Question 19. Expand the following, using suitable identities.

(a)
$$(xy + yz)^2$$

(b)
$$(x^2y - xy^2)^2$$

(c)
$$(7x + 5)^2$$

(d)
$$(0.9p - 0.5q)^2$$

(e) (
$$x^2 + y^2$$
) ($x^2 - y^2$)

Answer 19.

(a)
$$(xy + yz)^2$$

$$= (xy)^2 + 2 (xy x yz) + (yz)^2$$

$$= x^2y^2 + 2xy^2z + y^2z^2$$

(b)
$$(x^2y - xy^2)^2$$

$$= (x^2y)^2 - 2(x^2y \times xy^2) + (xy^2)^2$$

$$= x4y^2 - 2x^3y^3 + x^2y4$$

(c)
$$(7x + 5)^2$$

$$= (7x)^2 + 2 (7x \times 5) + (5)^2$$

$$=49x^2+70x+25$$

(d)
$$(0.9p - 0.5q)^2$$

$$= (0.9p)^2 - 2 (0.9p \times 0.5q) + (0.5q)^2$$

$$= 0.81p^2 - 0.9pq + 0.25q^2$$

(e)
$$(x^2 + y^2)(x^2 - y^2)$$

$$= x4 - x^2y^2 + y^2x^2 - y4$$

$$= x4 - y4$$

Question 20. Select the correct option of volume of a rectangular box with length = 2ab, breadth = 3ac and height = 2ac

- (a) 12a3bc2
- (b) 12a3bc
- (c) 12a2bc
- (d) 2ab + 3ac + 2ac

Answer 20. Option (a)

Explanation: The formula for calculating the volume of a rectangular box is

Volume = length x breadth x height

With the length of the input = 2ab, breadth = 3ac and height = 2ac

Volume = 2ab x 3ac x 2ac

$$= 12a^3bc^2$$