Important Question Class 8 Maths Chapter 9
 - Mensuration

Very Short Answer Question
1 Mark
2. Area of a trapezium $=$ Half of the sum of the length of parallel sides \times \qquad ?

Ans: Perpendicular distance between them.
3. The area of a parallelogram whose base is 9 cm 9 cm and altitude is 6 cm 6 cm
(a) $45 \mathrm{~cm} 245 \mathrm{~cm}^{2}$
(b) $54 \mathrm{~cm} 254 \mathrm{~cm}^{2}$
(c) $48 \mathrm{~cm} 248 \mathrm{~cm}^{2}$
(d) $84 \mathrm{~cm} 284 \mathrm{~cm}^{2}$

Ans: Area of parallelogram $=$ base \times altitude
$=9 \mathrm{~cm} \times 6 \mathrm{~cm}=54 \mathrm{~cm} 29 \mathrm{~cm} \times 6 \mathrm{~cm}=54 \mathrm{~cm}^{2}$
Therefore, correct option is (b)
4. The volume of a cube whose edge is 6a6a is
(a) $25 a 325 a^{3}$
(b) 216a3216a ${ }^{3}$
(c) $125 a 3125 a^{3}$
(d) None of these

Ans: Volume of cube $=6 a 3=216 a 36 a^{3}=216 a^{3}$
Therefore, the correct option is (c)
5. The sum of the areas of all six faces of a cuboid is the \qquad of the cuboid.
(a) Volume
(b) Surface area
(c) Area
(d) Curved surface area

Ans: Sum of the areas of all six faces of cuboid is the surface area of cuboid which is given by $2(\mathrm{l} b+\mathrm{b} h+\mathrm{h}) 2(\mathrm{l} b+\mathrm{b} h+\mathrm{h} \mathrm{l})$

Therefore, the correct option is (b)
6. The area of a. Rhombus is $240 \mathrm{~cm} 2240 \mathrm{~cm}^{2}$ and one of the diagonals is 16 cm 16 cm Then other diagonal is
(a) 25 cm 25 cm
(b) 30 cm 30 cm
(c) 18 cm 18 cm
(d) 35 cm 35 cm

Ans: Area of Rhombus $=240 \mathrm{~cm} 2=12(\mathrm{~d} 1 \times \mathrm{d} 2) 240 \mathrm{~cm}^{2}=\frac{1}{2}\left(\mathrm{~d}_{1} \times \mathrm{d}_{2}\right)$

$$
\begin{aligned}
& =2 \times 240 \mathrm{~cm} 2=16 \mathrm{~cm} \times \mathrm{d} 22 \times 240 \mathrm{~cm}^{2}=16 \mathrm{~cm} \times \mathrm{d}_{2} \\
& \Rightarrow \Rightarrow \mathrm{~d} 2=2 \times 240 \mathrm{~cm} 216 \mathrm{~cm}=30 \mathrm{cmd}_{2}=\frac{2 \times 240 \mathrm{~cm}^{2}}{16 \mathrm{~cm}}=30 \mathrm{~cm}
\end{aligned}
$$

Therefore, correct option is (b)
7. The volume of water tank is $3 \mathrm{~m} 33 \mathrm{~m}^{3}$. Its capacity in litres is
(a) 3030
(b) 300300
(c) 30003000
(d) None of these

Ans:
$1 \mathrm{~m} 3=1000$ litres $1 \mathrm{~m}^{3}=1000$ litres
$\mathrm{V}=3 \mathrm{~m} 3=3(1000)=3000$ litres $3 \mathrm{~m}^{3}=3(1000)=3000$ litres
Therefore, correct option is (c)

Short Answer Questions 2 Mark
8. Find the area of a square, the length of diagonal is $22-\sqrt{ } \mathrm{m} 2 \sqrt{2} m$

Ans: Area of Square $=12 \mathrm{~d} 2(\therefore \mathrm{~d}=22-\sqrt{ } \mathrm{m}) \frac{1}{2} \mathrm{~d}^{2}(\therefore \mathrm{~d}=2 \sqrt{2} \mathrm{~m})$
where $d=$ diagonal length
Area of Square $=12(22-\sqrt{ } \mathrm{m}) 2=12 \times 4 \times 2 \mathrm{~m} 2=4 \mathrm{~m} 2 \frac{1}{2}(2 \sqrt{2} \mathrm{~m})^{2}=\frac{1}{2} \times 4 \times 2 \mathrm{~m}^{2}=4 \mathrm{~m}^{2}$
9. If the parallel sides of a parallelogram are 2 cm 2 cmapart and their sum is 12 cm 12 cm then find its area.

Ans:

Opposite sides of a parallelogram are equal
$\therefore \mathrm{a}+\mathrm{b}=12 \mathrm{a}+\mathrm{b}=12$
$a+a=12 a+a=12$
$2 \mathrm{a}=122 \mathrm{a}=12$
$a=6 a=6$
Area of parallelogram $=\mathrm{a} \times \mathrm{h}=6 \times 2=12 \mathrm{~cm} 2 \mathrm{a} \times \mathrm{h}=6 \times 2=12 \mathrm{~cm}^{2}$
10. The length, breadth and height of a cuboid are $20 \mathrm{~cm} 20 \mathrm{~cm}, 15 \mathrm{~cm} 15 \mathrm{~cm}$ and 10 cm 10 cm respectively. Find its total surface area.

Ans:
$\mathrm{L}=20 \mathrm{~cm}, \mathrm{~B}=15 \mathrm{~cm}, \mathrm{H}=10 \mathrm{cmL}=20 \mathrm{~cm}, \mathrm{~B}=15 \mathrm{~cm}, \mathrm{H}=10 \mathrm{~cm}$
Surface area of cuboid $=2(\mathrm{lb}+\mathrm{bh}+\mathrm{hl}) 2(\mathrm{lb}+\mathrm{bh}+\mathrm{hl})$

$$
\begin{aligned}
& =2(20 \times 15+15 \times 10+10 \times 20) \mathrm{cm} 22(20 \times 15+15 \times 10+10 \times 20) \mathrm{cm}^{2} \\
& =2(300+150+200) \mathrm{cm} 22(300+150+200) \mathrm{cm}^{2} \\
& =2(650) \mathrm{cm} 2=1300 \mathrm{~cm} 22(650) \mathrm{cm}^{2}=1300 \mathrm{~cm}^{2}
\end{aligned}
$$

11. Volume of Cube is $8000 \mathrm{~cm} 38000 \mathrm{~cm}^{3}$. Find its surface area.

Ans:
$V=8000 \mathrm{~cm} 38000 \mathrm{~cm}^{3}$
$13=\left.8000 \mathrm{~cm} 3\right|^{3}=8000 \mathrm{~cm}^{3}$
$\Rightarrow I=8000 \mathrm{~cm} 3------\sqrt{ } 3 \Rightarrow I=\sqrt[3]{8000 \mathrm{~cm}^{3}}$
$\mathrm{I}=20 \mathrm{cml}=20 \mathrm{~cm}$
Surface Area of Cube $=61261^{2}$

$$
=6(20 \mathrm{~cm}) 2=2400 \mathrm{~cm} 26(20 \mathrm{~cm})^{2}=2400 \mathrm{~cm}^{2}
$$

12. Find the ratio of the areas of two circles whose radii is 7 cm 7 cm and 14 cm 14 cm .

Ans:

$$
\begin{aligned}
& \mathrm{r} 1=7 \mathrm{cmr}_{1}=7 \mathrm{~cm} \\
& \Rightarrow \Rightarrow \mathrm{~A} 1=\pi(7) 2=49 \pi \mathrm{~A}_{1}=\pi(7)^{2}=49 \pi \\
& \mathrm{r} 2=14 \mathrm{cmr}_{2}=14 \mathrm{~cm} \\
& \Rightarrow \Rightarrow A 2=\pi(14) 2=196 \pi A_{2}=\pi(14)^{2}=196 \pi
\end{aligned}
$$

$$
\mathrm{A} 1: \mathrm{A} 2=49 \pi: 196 \pi \mathrm{~A}_{1}: \mathrm{A}_{2}=49 \pi: 196 \pi
$$

$$
\mathrm{A} 1: \mathrm{A} 2=7: 28 \mathrm{~A}_{1}: \mathrm{A}_{2}=7: 28
$$

13. Find the diameter of the circle whose circumference is 230 m 230 m .

Ans: Circumference $=230 \mathrm{~m} 230 \mathrm{~m}$
$2 \pi r=230 m 2 \pi r=230 m$
$r=2302 \pi=230 \times 72 \times 22=36.6 \mathrm{mr}=\frac{230}{2 \pi}=\frac{230 \times 7}{2 \times 22}=36.6 \mathrm{~m}$
$d=2 r=2 \times 36.6 \mathrm{~m}=73.18 \mathrm{cmd}=2 \mathrm{r}=2 \times 36.6 \mathrm{~m}=73.18 \mathrm{~cm}$

Question (14-18)
3 Mark
14. Find the area of the figure if the upper portion is a semicircle

Ans: Total area $=$ Area of semicircle + Area of Rectangle
Area of semicircle $=12 \pi r 2 \frac{1}{2} \pi r^{2}$

With $r=12($ lengthofrectangle $)=12 \times 14=7 r=\frac{1}{2}($ lengthofrectangle $)=\frac{1}{2} \times 14=7$
Area of semicircle $=12 \times 227 \times 7 \times 7=77 \mathrm{~cm} 2 \frac{1}{2} \times \frac{22}{7} \times 7 \times 7=77 \mathrm{~cm}^{2}$
Area of rectangle $=$ length \times breadth

$$
=14 \times 8=112 \mathrm{~cm} 214 \times 8=112 \mathrm{~cm}^{2}
$$

Total area $=(77+112) \mathrm{cm} 2=189 \mathrm{~cm} 2(77+112) \mathrm{cm}^{2}=189 \mathrm{~cm}^{2}$
15. A goat is tied to one corner of a square field of side 8 m 8 mby a rope 3 m 3 m long. Find the area it can graze? Also find the area the goat cannot graze.

Ans:

Length of side of a square $=8 \mathrm{~m} 8 \mathrm{~m}$
Area of square $=(8 m) 2=64 m 2(8 m)^{2}=64 \mathrm{~m}^{2}$
Length of rope $=3 \mathrm{~m} 3 \mathrm{~m}=\mathrm{rr}$ (radius of circle)
As the goat is tied to a corner of square plot it can only graze 14 th $\frac{1}{4}$ th of circle of radius equal to length of rope inside the plot.

Area covered (or grazed) by goat $=\pi r 24 \frac{\pi r^{2}}{4}$

$$
\begin{aligned}
& =227 \times(3) 24=22 \times 928 \frac{22}{7} \times \frac{(3)^{2}}{4}=\frac{22 \times 9}{28} \\
& =7.07 \mathrm{~m} 27.07 \mathrm{~m}^{2}
\end{aligned}
$$

Area the goat cannot graze = Area of square - Area grazed by goat

$$
=64-7.07=56.93 m 264-7.07=56.93 \mathrm{~m}^{2}
$$

16. If xx units are added to the length of the radius of a circle, what is the number of units by which the circumference of the circle is increased?

Ans: Let the radius of the circle be 'rr' units
The circumference of the circle will be $2 \pi r 2 \pi r$ units
If the radius is increased by ' $x x^{\prime}$ ' units, the new radius will be $(r+x)(r+x)$ units.
New circumference will be $2 \pi(r+x)=2 \pi r+2 \pi x 2 \pi(r+x)=2 \pi r+2 \pi x$
Circumference increased by $2 \pi x 2 \pi x$ units.
17. Find the area of the shaded portion if diameter of circle is 16 cm 16 cm and $A B C D$ is a square.

Ans: Area of shaded portion $=($ Area of circle with radius $=8 \mathrm{~cm} 8 \mathrm{~cm})-($ Area of square with diagonal length $=16 \mathrm{~cm} 16 \mathrm{~cm}$)
$=\pi r 2-12 d 2 \pi r^{2}-\frac{1}{2} d^{2}$
$=227 \times(8) 2-12(16) 2 \frac{22}{7} \times(8)^{2}-\frac{1}{2}(16)^{2}$
$=22 \times 647-128 \frac{22 \times 64}{7}-128$
$=201.1-128=73.1 \mathrm{~cm} 2201.1-128=73.1 \mathrm{~cm}^{2}$
18. How many $\mathrm{cm} 3 \mathrm{~cm}^{3}$ of juice can be poured in a cuboidal can whose dimensions are $15 \mathrm{~cm} \times 10 \mathrm{~cm} \times 25 \mathrm{~cm} 15 \mathrm{~cm} \times 10 \mathrm{~cm} \times 25 \mathrm{~cm}$. How many cubical packs of $25 \mathrm{~cm} 325 \mathrm{~cm}^{3}$ volume can be made?

Ans: Volume of cuboid $=$ Length $\times \times$ Breadth $\times \times$ Height

$$
=15 \mathrm{~cm} \times 10 \mathrm{~cm} \times 25 \mathrm{~cm} 15 \mathrm{~cm} \times 10 \mathrm{~cm} \times 25 \mathrm{~cm}
$$

Volume of juice in cuboidal can $=3750 \mathrm{~cm} 33750 \mathrm{~cm}^{3}$
Each volume of cubical packet $=25 \mathrm{~cm} 325 \mathrm{~cm}^{3}$
Number of such cubical packets made from the volume of juice in cuboidal can
$\mathrm{n}=$ volumeofjuiceincuboidalcaneachcubicalpackvolumen $=\frac{\text { volumeofjuiceincuboidalcan }}{\text { eachcubicalpackvolume }}$
$\mathrm{n}=3750 \mathrm{~cm} 325 \mathrm{~cm} 3 \mathrm{n}=\frac{3750 \mathrm{~cm}^{3}}{25 \mathrm{~cm}^{3}}$
$\mathrm{n}=150 \mathrm{n}=150$ packets

Question (19-25) 5 Mark
19. A rectangular piece of paper 66 cm 66 cm long and 10 cm 10 cmbroad is rolled along the length to form a cylinder. What is the radius of the base and calculate volume of cylinder?

Ans:

When the rectangular piece is rolled in the form of a cylinder then the length became the circumference of the base of cylinder

C = 6666,
$2 \pi r=662 \pi r=66$
$\pi r=662=33 \pi r=\frac{66}{2}=33$
$r=33 \times 722=10.5 \mathrm{cmr}=\frac{33 \times 7}{22}=10.5 \mathrm{~cm}$
Volume of Cylinder with radius $=10.5 \mathrm{~cm} 10.5 \mathrm{~cm}$ ang height $=10 \mathrm{~cm} 10 \mathrm{~cm}$

$$
\begin{aligned}
V & =\pi r 2 h=227 \times(10.5) 2 \times 10 \mathrm{~V}=\pi \mathrm{r}^{2} \mathrm{~h}=\frac{22}{7} \times(10.5)^{2} \times 10 \\
& =3465 \mathrm{~cm} 33465 \mathrm{~cm}^{3}
\end{aligned}
$$

20. $A B C D$ has area equal to $2828 . B C$ is parallel to $A D$. $B A$ is perpendicular to $A D$. If $B C$ is 6 6 and $A D$ is 88 , then what is CD?

Ans: The shape of the given figure is a trapezium

Area of Trapezium $=12($ sum of parallel sides $) \times$ height $\frac{1}{2}($ sum of parallel sides $) \times$ height

Given area of $A B C D=2828, B C=6688, C D=$?
$28=A=12(6+8) h 28=A=\frac{1}{2}(6+8) h$
$h=28 \times 214=4$ unitsh $=\frac{28 \times 2}{14}=4$ units
To find CD: let DE perpendicular to $A D$ (construction done)
In triangle CED,
$E D=A D-A E$
$E D=8-68-6$
$E D=22$
$\mathrm{CD} 2=\mathrm{CE} 2+\mathrm{ED} 2 \mathrm{CD}^{2}=\mathrm{CE}^{2}+\mathrm{ED}^{2}$
CD2 $=(4) 2+(2) 2=16+4=20 \mathrm{CD}^{2}=(4)^{2}+(2)^{2}=16+4=20$
$C D=20--\sqrt{ }=25-\sqrt{ } C D=\sqrt{20}=2 \sqrt{5}$
21. From the adjoining figure find the area of shaded portion

Ans: From the figure,
Area of shaded portion $=$ [Area of rectangle with $I=241=24, b=10 b=10]-[$ Area of rectangle with $b=6 b=6, I=10 l=10+$ Area of square with side $=44$]

Area of big rectangle $=\mathrm{l} \times \mathrm{bl} \times \mathrm{b}$

$$
=24 \times 10=240 \mathrm{~cm} 224 \times 10=240 \mathrm{~cm}^{2}
$$

Area of small rectangle $=\mid \times b l \times b$

$$
=6 \times 10=60 \mathrm{~cm} 26 \times 10=60 \mathrm{~cm}^{2}
$$

Area of squares $=4 \times 4=16 \mathrm{~cm} 24 \times 4=16 \mathrm{~cm}^{2}$
Therefore, Area of shaded portion $=240-(60+16) 240-(60+16)$

$$
=240-76=164 \mathrm{~cm} 2240-76=164 \mathrm{~cm}^{2}
$$

22. A flooring tile has a shape of a parallelogram whose base is 28 cm 28 cm and the corresponding height is 20 cm 20 cm . How many such tiles are required to cover a floor of area $2800 \mathrm{~m} 22800 \mathrm{~m}^{2}$.

Ans: Given, Base $=28 \mathrm{~cm} 28 \mathrm{~cm}$, height $=20 \mathrm{~cm} 20 \mathrm{~cm}$
Area of floor $=2800 \mathrm{~m} 22800 \mathrm{~m}^{2}$

$$
=2800 \times 104 \mathrm{~cm} 2=28 \times 106 \mathrm{~cm} 22800 \times 10^{4} \mathrm{~cm}^{2}=28 \times 10^{6} \mathrm{~cm}^{2}
$$

Area of each parallelogram tile $=$ base \times height

$$
=28 \times 20=560 \mathrm{~cm} 228 \times 20=560 \mathrm{~cm}^{2}
$$

Number of tiles required $=$ AreaoffloorAreaoftiles $=28 \times 106560 \frac{\text { Areaoffloor }}{\text { Areaoftiles }}=\frac{28 \times 10^{6}}{560}=$
$1052=1000002=50000 \frac{10^{5}}{2}=\frac{100000}{2}=50000$
23. Rain water which falls on a flat rectangular surface of length 6 m 6 m and breadth 4 m 4 m is transferred into a cylindrical vessel of internal radius 20 cm 20 cm . What will be the height of water in the cylindrical vessel if the rain fall is 1 cm 1 cm (Take $\pi=3.14 \pi=3.14$)

Ans:

Since the water in the rectangular surface is transferred to the cylindrical vessel.
Length of surface $=6 \mathrm{~m}=600 \mathrm{~cm} 6 \mathrm{~m}=600 \mathrm{~cm}$
Breadth of surface $=4 \mathrm{~m}=400 \mathrm{~cm} 4 \mathrm{~m}=400 \mathrm{~cm}$
Height of water level $=1 \mathrm{~cm} 1 \mathrm{~cm}$
Volume of water on the surface $=1 \times b \times h l \times b \times h$
$=600 \times 400 \times 1=240000 \mathrm{~cm} 3$

$$
=600 \times 400 \times 1
$$

$$
=240000 \mathrm{~cm}^{3}
$$

Let ' $h \mathrm{~h}$ ' be the height of the cylindrical vessel, $\mathrm{r}=20 \mathrm{cmr}=20 \mathrm{~cm}$ (radius of cylindrical vessel)

Volume of cylindrical vessel $=\pi r 2 h \pi r^{2} h$

$$
=\pi(20) 2 \times h \pi(20)^{2} \times h
$$

Volume of water on surface = Volume of water in cylindrical vessel
$24000=\pi(20) 2 \times h 24000=\pi(20)^{2} \times h$
$h=24000 \pi \times 20 \times 20=191.08 \mathrm{cmh}=\frac{24000}{\pi \times 20 \times 20}=191.08 \mathrm{~cm}$
24. If each edge of a cube is doubled
(a) how many times will its surface area increases
(b) how many times will its volume increases

Ans:

New Cube

For side of ' x ' units, surface area $s 1=6 x 2 s s_{1}=6 x^{2}$
When side of cube is doubled ($2 \times 2 \mathrm{x}$ units)
Surface area s2 $=6(2 x) 2 s_{2}=6(2 x)^{2}$
$s 2=6 \times 4(x) 2=4(6 x 2)=4 s 1 s_{2}=6 \times 4(x)^{2}=4\left(6 x^{2}\right)=4 s_{1}$

Surface area increases by 44 times.
Volume for edge of ' $x x^{\prime}$ units $v 1=x 3 v_{1}=x^{3}$
Volume of cube when edge is doubled $(2 x)(2 x)$, $v 2=(2 x) 3 v_{2}=(2 x)^{3}$

$$
\mathrm{v} 2=8(\mathrm{x}) 3=8 \mathrm{v} 1 \mathrm{v}_{2}=8(\mathrm{x})^{3}=8 \mathrm{v}_{1}
$$

Therefore, volume increases by 8 times.
25. A box with measures $80 \mathrm{~cm} \times 48 \mathrm{~cm} \times 24 \mathrm{~cm} 80 \mathrm{~cm} \times 48 \mathrm{~cm} \times 24 \mathrm{~cm}$ is to be covered with a tarpaulin cloth how many metres of tarpaulin cloth of width 96 cm 96 cm is required to cover 50 50 such boxes?

Ans: The box with $\mathrm{I}=80 \mathrm{~cm}, \mathrm{~b}=48 \mathrm{~cm}, \mathrm{~h}=24 \mathrm{cml}=80 \mathrm{~cm}, \mathrm{~b}=48 \mathrm{~cm}, \mathrm{~h}=24 \mathrm{~cm}$
Total surface area $=2(\mathrm{lb}+\mathrm{bh}+\mathrm{hl}) 2(\mathrm{lb}+\mathrm{bh}+\mathrm{hl})$

$$
\begin{aligned}
& =2[(80 \times 48)+(48 \times 24)+(80 \times 24)] 2[(80 \times 48)+(48 \times 24)+(80 \times 24)] \\
& =2[3840+1152+1920] 2[3840+1152+1920] \\
& =2[6912]=13824 \mathrm{~cm} 22[6912]=13824 \mathrm{~cm}^{2}
\end{aligned}
$$

Length of cloth required $=($ Areaofboxbreadth $) \times 50\left(\frac{\text { Areaofbox }}{\text { breadth }}\right) \times 50$

$$
\begin{aligned}
& =(1382496) \times 50=144 \times 50\left(\frac{13824}{96}\right) \times 50=144 \times 50 \\
& =7200 \mathrm{~cm}=72 \mathrm{~m} 7200 \mathrm{~cm}=72 \mathrm{~m}
\end{aligned}
$$

