Important Questions Class 12 Maths Chapter 1 Relations \& Functions

Very Short Answer Questions [1 Mark Question]

Ques. If $R=\left\{\left(a, a^{3}\right)\right.$: a is a prime number less than 5$\}$ be a relation. Find the range of R.[Foreign 2014]

Ans. Given, $R=\left\{\left(a, a^{3}\right)\right.$: a is a prime number less than 5$\}$.
We know that 2 and 3 are the prime numbers less than 5 .
Therefore, a can take values of 2 and 3 .
$R=\left\{\left(2,2^{3}\right),\left(3,3^{3}\right)\right\}=\{(2,8),(3,27)\}$
Hence, the range of R is $\{8,27\}$.
Ques. If $f:\{1,3,4\}\{1,2,5\}$ and $g:\{1,2,5\}\{1,3\}$ given by $f=\{(1,2),(3,5),(4,1)\}$ and $g=$ $\{(1,3),(2,3),(5,1))$. Write down gof. [All India 2014]

Ans. The functions f: $\{1,3,4\}\{1,2,5\}$ and $\mathrm{g}: ~\{1,2,5\}\{1,3\}$ are defined as,

$$
f=\{(1,2),(3,5),(4,1)\}
$$

and, $g=\{(1,3),(2,3),(5,1)\}$
gof $(1)=g(f(1)\}=g(2)=3[$ since, $f(1)=2$ and $g(2)=3]$
$g \circ f(3)=g(f(3))=g(5)=1[$ since, $f(3)=5$ and $g(5)=1]$
gof $(4)=g(f(4))=g(1)=3[$ since, $f(4)=1$ and $g(1)=3]$
Therefore, $\operatorname{gof}=\{(1,3),(3,1),(4,3)\}$.
Ques. Let R be the equivalence relation in the set $A=\{0,1,2,3,4,5\}$ given by $R=\{(a, b): 2$ divides $(a-b)\}$. Write the equivalence class [0]. [Delhi 2014]

Ans. Given, $R=\{(a, b): 2$ divides $(a-b)\}$. Here, all even integers are related to zero, i.e. (0 , 2),
(0, 4).

Hence, the equivalence class of $[0]=\{2,4\}$.
Ques. If $A=\{1,2,3\}, B=\{4,5,6,7\}$ and $f=\{(1,4),(2,5),(3,6))$ is a function from A to B. State whether f is one-one or not. [All India 2011]

Ans. Given, $A=\{1,2,3\}$ and $B=\{4,5,6,7\}$
Now, $f: A \rightarrow B$ is defined as $f=\{(1,4),(2,5),(3,6)\}$
Therefore, $f(1)=4, f(2)=5$ and $f(3)=6$.
It is seen that the images of distinct elements of A under f are distinct.So, f is one-one.
Ques. If: R R is defined by $f(x)=3 x+2$, then define $f[f(x)]$. [Foreign 2011; Delhi 2010]
Ans. Given, $f(x)=3 x+2$
Now, $f[f(x)]=f(3 x+2)=3(3 x+2)+2=9 x+6+2=9 x+8$.
Ques. Write fog, if $f: R \rightarrow R$ and $g: R \rightarrow R$ are given by $f(x)=|x|$ and $g(x)=|5 x-2|$.
[Foreign 2011].
Ans. Given, $f(x)=|x|, g(x)=5 x-21$ Now, $f o g(x)=f[g(x)]=f\{\mid 5 x-21\}$

Short Answer Questions [2 Marks Questions]

Ques. If $R=\{(x, y): x+2 y=8\}$ is a relation on N, then write the range of R. [All India 2014]

Ans. Given, the relation R is defined on the set of natural numbers, i.e.,
N as $R=\{(x, y): x+2 y=8\}$
To find the range of $R, x+2 y=8$ can be rewritten as $y=8-x 2$
On putting $x=2$, we get $y=8-22=3$
On putting $x=4$, we get $y=2$
On putting $x=6$, we get $y=1$
As, $x, y N$, then $R=\{(2,3)(4,2)(6,1)\}$. Hence, the range of relation is $\{3,2,1\}$.
Ques. If f is an invertible function, defined as $f(x)=3 x-4 / 5$ then write $f-{ }^{1}(x)$. [Foreign 2010]

Ans. We are given $f(x)=3 x-4 / 5$ which is invertible.
Let,
$y=3 x-4 / 5$
$5 y=3 x-4$
$X=5 y+4 / 3$
$f-1(y)=5 y+3 / 3$ and $f(x)=5 x+4 / 3$
Ques.Show that the Signum Function $f: \mathbf{R} \rightarrow \mathbf{R}$, given by
$f(x)=\{1$ for x greater than 0
0 for $\mathrm{x}=0$ is neither one-one nor onto
-1 for x less than 0
Ans. In the given function $f(x)=\{1$ for x greater than 0
0 for $\mathrm{x}=0$ is neither one-one nor onto
-1 for x less than 0
the value of $f(x)$ is defined only for when $x=-1,0,1$.
For any other real number, say $y=2$, there is no corresponding element x. Therefore, the function is not an onto function.

Also, for any value of x, say f_{1} or f_{2}, the value will be the same image, that is, 1,0 , or -1 . Therefore, it is not a one to one function.

Hence, the given function is neither a one-one function nor an onto function.
Ques. State whether the function $f: N \rightarrow N$ given by $f(x)=5 x$ is injective, surjective or both. [All India 2008C, HOTS]

Ans. $f: N \rightarrow N$ is given by $f(x)=5 x$
Let $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{~N}$ such that $\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)$
$\therefore 5 \mathrm{x}_{1}=5 \mathrm{x}_{2}$
$\Rightarrow \mathrm{x}_{1} \mathrm{x}_{2}$
$\therefore \mathrm{f}$ is a one-one, or, an injective function.
Now, let $\mathrm{y}=\mathrm{f}(\mathrm{x})$
$\Rightarrow y=5 x$
For $\mathrm{y}=1, \mathrm{x}$ does not belong to N .
Therefore, the function is not an onto or surjective function.
Ques. If $f: R \rightarrow R$ is defined by $f(x)=\left(3-x^{3}\right) 1 / 3$, then find fof(x). [All India 2010]
Ans. Given, function is $f: R \rightarrow R$ such that,
$f(x)=\left(3-x^{3}\right)^{1 / 3}$
Now, fof $(x)=f[f(x)]=f\left[\left(3-x^{3}\right)^{1 / 3}\right]$
$=\left[3-\left\{\left(3-x^{3}\right)^{1 / 3}\right\}^{3}\right]^{1 / 3}$
$=\left[3-\left(3-x^{3}\right)\right]^{1 / 3}=\left(x^{3}\right)^{1 / 3}$
$=x$

Long Answer Questions [3 Marks Questions]

Ques. If $f: R \rightarrow R$ is defined by $f(x)=x^{2}-3 x+2$, find $f(f(x))$. [NCERT, MISC]
Ans. Given, $f(x)=x^{2}-3 x+2$.
$\Rightarrow f(f(x))=f(x)^{2}-3 f(x)+2$.
$=\left(x^{2}-3 x+2\right)^{2}-3\left(x^{2}-3 x+2\right)+2$
Using $(a-b+c)^{2}=a^{2}+b^{2}+c^{2}-2 a b+2 a c-2 a b$
$=\left(x^{2}\right)^{2}+(3 x)^{2}+2^{2}-2 x 2(3 x)+2 x^{2}(2)-2 x^{2}(3 x)-3\left(x^{2}-3 x+2\right)+2$
$=x^{4}+9 x^{2}+4-6 x^{3}-12 x+4 x^{2}-3 x^{2}+9 x-6+2$
$=x^{4}-6 x^{3}+9 x^{2}+4 x^{2}-3 x^{2}-12 x+9 x-6+2+4$
$=x^{4}-6 x^{3}+10 x^{2}-3 x$.
Ques. Given a non empty set X, consider $P(X)$ which is the set of all subsets of X. Define the relation R in $P(X)$ as follows: For subsets A, B in $P(X), A R B$ if and only if $A \subset B$. Is R an equivalence relation on $P(X)$? Justify you answer.

Ans. A R B means $A \subset B$

Here, relation is
$R=\{(A, B): A \& B$ are sets, $A \subset B\}$

Reflexive

Since every set is a subset of itself,
This implies, $A \subset A$
$\Rightarrow(A, A) \in R$.
Therefore, R is reflexive.

Symmetric

To check whether symmetric or not,
If $(A, B) \in R$, then $(B, A) \in R$
If $(A, B) \in R$,

Then, $A \subset B$.
But, $B \subset A$ is not true

As all elements of A are in B, therefore, $A \subset B$.
But all elements of B are not in A.
So $B \subset A$ is not true.

Therefore, R is not symmetric.
Transitive

Since $(A, B) \in R \&(B, C) \in R$
If, $A \subset B$ and $B \subset C$, then $A \subset C$.
$\Rightarrow(A, C) \in R$
So, If $(A, B) \in R$ \& $(B, C) \in R$, then $(A, C) \in R$
Therefore, R is transitive.

Hence, R is reflexive and transitive but not symmetric.
Therefore, R is not an equivalence relation since it is not symmetric.
Ques. Show that the relation R in the set $\{1,2,3\}$ given by $R=\{(1,1),(2,2),(3,3),(1,2)$, $(2,3)\}$ is reflexive but neither symmetric nor transitive.

Ans. $\mathrm{R}=\{(1,1),(2,2),(3,3),(1,2),(2,3)\}$

Reflexive

If the relation is reflexive, then $(a, a) \in R$ for every $a \in(1,2,3)$.
Since $(1,1) \in R,(2,2) \in R \&(3,3) \in R$.
Therefore, R is reflexive

Symmetric

To check whether symmetric or not, If $(a, b) \in R$, then $(b, a) \in R$.
Here $(1,2) \in R$, but $(2,1) \notin R$.

Therefore, R is not symmetric.
Transitive

To check whether transitive or not,
If $(a, b) \in R$ \& $(b, c) \in R$, then $(a, c) \in R$.
Here, $(1,2) \in R$ and $(2,3) \in R$ but $(1,3) \notin R$.

Therefore, R is not transitive.
Hence, R is reflexive but neither symmetric nor transitive.

Very Long Answer Questions [5 Marks Questions]

Ques. If $f, g: R \rightarrow R$ are two functions defined as $f(x)=|x|+x$ and $g(x)=|x|-x, \forall x \in R$, then, find fog and gof. [India 2014]

Ans. Here,
$f(x)=|x|+x$ and $g(x)=|x|-x$
$f(x)=\{x+x$, if $x \geq 0$
$-x+x$, if $x<0$
$f(x)=\{2 x$, if $x \geq 0$
0 , if $x<0$
$g(x)=\{x-x$, if $x \geq 0$
$-x-x$, if $x<0$
or
$g(x)=\{0$, if $x \geq 0$
$-2 x$, if $x<0$
Thus for $x \geq 0$, $(g \circ f)(x)=g(2 x)=0$
and for $x<0,(g \circ f)(x)=g(0)=0$
or
(gof)(x) $=0$ for all $x \in R$
Thus for $x \geq 0,(f \circ g)(x)=f(0)=2(0)=0$
and for $\mathrm{x}<0$,
$(f \circ g)(x)=f(-2 x)=-4 x$
or
$(f o g)(x)=\{0$, if $x \geq 0$
$-4 x$, if $x<0$
Ques. If $A=R-\{3\}$ and $B=R-\{1\}$. Consider the function $f: A \rightarrow B$ defined by $f(x) x-2 / x-3$ for
all $x \in A$. Then show that f is bijective. Find $f-{ }^{-1}(x)$. [Delhi 2012,2014]
Ans. Given, function is $f: A \rightarrow B$, where $A=R-\{3\}$
and $B=R-\{1\}$, such that $f(x)=x-2 / x-3$.
For One-one

Let $f\left(x_{1}\right)=f\left(x_{2}\right)$, for all $x_{1}, x_{2} \in A$
$\Rightarrow x_{2}-2 / x_{1}-3=x_{2}-2 / x_{2}-3$
$\Rightarrow\left(x_{1}-2\right)\left(x_{2}-3\right)=\left(x_{1}-2\right)\left(x_{?}-3\right)$
$\Rightarrow x_{1} x_{2}-3 x_{1}-2 x_{2}+6=x_{1} x_{2}-3 x_{1}-2 x_{2}+6$
$\Rightarrow-3 x_{1} 2 x_{2}=-3 x_{1}-2 x_{2}$
$-3\left(x_{1}-x_{2}\right)+2\left(x_{1}-x_{2}\right)=0$
$-\left(x_{1}-x_{2}\right)=0$
Or, $x_{1}-x_{2}=0$
This implies, $\mathrm{x}_{1}=\mathrm{x}_{2}$.
Since, $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow x_{1}=x_{2}$, for all $x_{1}, x_{2} \in A$.
So, $f(x)$ is a one-one function.
Onto
To show $f(x)$ is onto, we show that range of $f(x)$ and its codomain are same.
Now,
let. $y=x-2 / x-3$
or, $x y-3 y=x-2$
$\Rightarrow x y-x=3 y-2$
$\Rightarrow x(y-1)=3 y-2$
$\Rightarrow x=3 y-2 / y-1 \ldots .$. Eqn (1)
Since, $x \in R-\{3\}$, for all $y \in R-\{1\}$, the range of $f(x)=R-\{1\}$.
Also, the given codomain of $f(x)=R-\{1\}$
Therefore, Range = Codomain.
Hence, $f(x)$ is an onto function.

Therefore, $f(x)$ is a bijective function.
From Eq. (i), we get,
$f-1(y)=3 y-2 / y-1$
$\Rightarrow \mathrm{f}^{-1}(\mathrm{x})=3 \mathrm{x}-2 / \mathrm{x}-1$
which is the inverse function of $f(x)$.
Ques. If $A=\{1,2,3, \ldots, 9\}$ and R be the relation in $A x A$ defined by (a, b) $R(c, d)$. If $a+d=b+c$ for (a, b), (c, d) in Ax A. Prove that R is an equivalence relation, Also, obtain the equivalence class [(2, 5)]. [Delhi 2014]

Ans. Given, relation R defined by $(a, b) R(c, d)$, if $a+d=b+c$ for $(a, b),(c, d)$ in $A \times A$.
Here, $A=\{1,2,3, \ldots ., 9\}$
We observe the following properties on R :
Reflexive

Let $(1,2)$ be an element of $A X A$.
Then, $(1,2)$ belongs to AxA
This implies, 1,2 belongs to A

Or, $1+2=2+1$ [since, addition is commutative]
Or, $(1,2) R(1,2)$
Thus, $(1,2) R(1,2)$, for all(1, 2) belonging to
AxA.

So, R is reflexive on $A \times A$.

Symmetric
Let $(1,2),(3,4) \in A \times A$ such that $(1,2) R(3,4)$.

Then, $1+4=2+3$
$\Rightarrow 3+2=4+1$ [since, addition is commutative]
$\Rightarrow(3,4) R(1,2)$

Thus, $(1,2) \mathrm{R}(3,4)$
$\Rightarrow(3,4) R(1,2)$, for all $(1,2),(3,4)$ belonging to AXA
So, R is symmetric on $A \times A$.
Transitive

Let $(1,2),(3,4),(5,6) \in A \times A$ such that
$(1,2) R(3,4)$ and $(3,4) R(5,6)$.
Then,
$(1,2) R(3,4)$
Or, $1+4=2+3$

Or, $(3,4) R(5,6)$
Or, $3+6=4+5$
This implies, $(1+4)+3+6=(2+3)+(4+5)$
or, $1+6=2+5=(1,2) R(5,6)$
Thus, $(1,2) R(3,4)$ and $(3,4) R(5,6)$
$\Rightarrow(1,2) R(5,6),(1,2),(3,4),(5,6)=A \times A$
So, R is transitive on $A \times A$.
Hence, it is an equivalence relation on $\mathrm{A} \times \mathrm{A}$.
Ques. If \mathbf{Z} is the set of all integers and R is the relation on Z defined as $R=\{(a, b): a, b \in Z$ and $a-b$ is divisible by 5\}. Prove that R is an equivalence relation. [Delhi 2010, HOTS]

Ans. The given relation is $R=\{(a, b): a, b \in Z$ and $a-b$ is divisible by 5$\}$. We shall prove that R is reflexive, symmetric and transitive.
(i) Reflexive

As for any $x \in Z$, we have $x-x=0$ and 0 is divisible by 5 .
$\Rightarrow(x-x)$ is divisible by 5 .
$\Rightarrow(x, x) \in R$ for all $X \in Z$.

Therefore, R is reflexive.
(ii) Symmetric

As $(x, y) \in R$, where $(x, y) \in Z$.
$\Rightarrow(x-y)$ is divisible by 5 . [by definition of R]
$\Rightarrow x-y=5 A$ for some $A \in Z$
$\Rightarrow y-x=5(-A)$
$\Rightarrow(y-x)$ is also divisible by 5
Therefore, $(y, x) \in R$
Therefore, R is symmetric.
iii) Transitive

As $(x, y) \in R$, where $x, y \in Z$
$\Rightarrow(x-y)$ is divisible by 5 .
$\Rightarrow x-y=5 A$ for some $A \in Z$
Again, for $(y, z) \in R$, where $y, z \in Z$
$\Rightarrow(y-z)$ is divisible by 5
$\Rightarrow y-z=5 B$ for some $B \in Z$
$(y-z)$ is divisible by 5

Now, $(x-y)+(y-z)=5 A+5 B$.
$\Rightarrow x-z=5(A+B)$
$\Rightarrow(x-z)$ is divisible by 5 for some $A+B \in Z$
Therefore, R is transitive.
Thus, R is reflexive, symmetric and transitive. Hence, it is an equivalence relation.

