Important Questions Class 12 Maths Chapter 10 Vector Algebra

1 Mark Questions

1. Is the measure of 5 seconds is scalar or vector?

Ans: Scalar
2. Find the sum of the vectors.

$$
\vec{a}=\vec{i}-2 \vec{j}+\vec{k}, \quad \vec{b}=-2 \vec{i}+4 \vec{j}+5 \vec{k} \quad \vec{c}=\hat{i}-6 \hat{j}-7 \hat{k}
$$

Ans: $\vec{d}=\vec{a}+\vec{b}+\vec{c}$
$=0 \hat{i}-4 \hat{j}-\hat{k}$
3. Find the direction ratios and the direction cosines of the vector

$$
\vec{r}=2 \hat{i}-7 \hat{j}-3 \hat{k}
$$

Ans: D.R of \vec{r} are 2, $-7,-3$

$$
|\vec{r}|=\sqrt{4+49+9}=\sqrt{62}
$$

D.C of

$$
\vec{r} \text { are } \frac{2}{\sqrt{62}}, \frac{-7}{\sqrt{62}}, \frac{-3}{\sqrt{62}}
$$

4. Find the angle between vectors

$$
\vec{a} \text { and } \vec{b} \text { if }|\vec{a}|=\sqrt{3},|\vec{b}|=2 \quad \vec{a} \cdot \vec{b}=\sqrt{6}
$$

Ans: $\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$

$$
\begin{aligned}
&=\frac{\sqrt{6}}{(\sqrt{3}) \cdot(2)}=\frac{\sqrt{2} \times \sqrt{3}}{\sqrt{3} \cdot 2}=\frac{\sqrt{2}}{\sqrt{2} \cdot \sqrt{2}} \\
& \cos \theta=\frac{1}{\sqrt{2}} \quad \theta=\pi / 4
\end{aligned}
$$

5. Vectors \vec{a} and \vec{b} be such that

$$
|\vec{a}|=3, \text { and }|\vec{b}|=\frac{\sqrt{2}}{3} \text {, }
$$

then $\vec{a} \times \vec{b}$ is a unit vector. Find angle between \vec{a} and \vec{b}. Ans:

$$
\begin{array}{ll}
& |\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \sin \theta \\
1=\not{ }^{\prime} \times \frac{\sqrt{2}}{\not \partial b} \times \sin \theta \\
\frac{1}{\sqrt{2}}=\sin \theta & \\
\theta=\pi / 4 &
\end{array}
$$

6. Is the measure of 10 Newton is scalar or vector.

Ans:Vector
7. Write two different vectors having same magnitude.

Ans: $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}$

$$
|\vec{a}|=\sqrt{1+4+9}=\sqrt{14}
$$

$$
\vec{b}=3 \hat{i}+2 \hat{j}+1 \hat{k}
$$

$$
|\vec{b}|=\sqrt{9+4+1}=\sqrt{14}
$$

8. Find the direction ratios and the direction cosines of the vector $\vec{r}=\hat{i}+\hat{j}+\hat{k}$ Ans: D.R of \bar{r} are $1,1,1$

$$
\begin{gathered}
\vec{r}=\sqrt{1+1+1}=\sqrt{3} \\
\text { D.C of are } \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}
\end{gathered}
$$

9. Find

$$
|\vec{a}-\vec{b}| \text { if }|\vec{a}|=2, \quad|\vec{b}|=3 \text { and } \vec{a} \cdot \vec{b}=4
$$

Ans:

$$
\begin{aligned}
& |\vec{a}-\vec{b}|^{2}=(\vec{a}-\vec{b}) \cdot(\vec{a}-\vec{b}) \\
& =\vec{a} \cdot \vec{a}-\vec{a} \cdot \vec{b}-\vec{b} \cdot \vec{a}+\vec{b} \cdot \vec{b} \\
& =|\vec{a}|-2 \vec{a} \cdot \vec{b}+|\vec{b}|^{2}
\end{aligned}
$$

$=4-2 \times 4+9$
$=5$
$|\vec{a}-\vec{b}|=\sqrt{5}$
10. If

$$
\vec{a}=4 \hat{i}+3 \hat{j}+2 \hat{k} \vec{b}=3 \hat{i}+2 \hat{k} \text { find }|\vec{b} \times 2 \vec{a}|
$$

Ans: $\vec{b}=3 \hat{i}+2 \hat{k}$

$$
\begin{gathered}
2 \vec{a}=8 \hat{i}+6 \hat{j}+4 \hat{k} \\
\vec{b} \times 2 \vec{a}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
3 & 0 & 2 \\
8 & 6 & 4
\end{array}\right| \\
=\hat{i}(0-12)-\hat{j}(12-16)+\hat{k}(18-0) \\
-12 \hat{i}+4 \hat{j}+18 \hat{k} \\
|\vec{b} \times 2 \vec{a}|=\sqrt{(-12)^{2}+(4)^{2}+(18)^{2}}
\end{gathered}
$$

$=\sqrt{484}$
$=22$
11. Is the measure of $20 \mathrm{~m} / \mathrm{s}$ towards north is scalar or vector.

Ans: Vector
12.

$$
\vec{a}=\hat{i}+2 \hat{j} \vec{b}=2 \hat{i}+\hat{j} I s|\vec{a}|=|\vec{b}|
$$

Ans:

$$
\begin{aligned}
& |\vec{a}|=\sqrt{(1)^{2}+(2)^{2}}=\sqrt{5} \\
& |\vec{b}|=\sqrt{(2)^{2}+(1)^{2}}=\sqrt{5}
\end{aligned}
$$

13. Find the direction ratios and the direction cosines of the vector $\vec{r}=\hat{i}+2 \hat{j}+3 \hat{k}$ Ans: D.R of $\quad \vec{r}$ are 1,2,3

$$
|\stackrel{\rightharpoonup}{r}|=\sqrt{1+4+9}=\sqrt{4}
$$

D.C of

$$
\vec{r} \text { are } \frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}
$$

14. Evaluate the product

$$
(3 \vec{a}-5 \vec{b}) \cdot(2 \vec{a}+7 \vec{b})
$$

Ans:

$$
\begin{aligned}
&(3 \vec{a}-5 \vec{b}) \cdot(2 \vec{a}+7 \vec{b}) \\
&= 6|\vec{a}|^{2}-11 \vec{a} \cdot \vec{b}-35|\vec{b}|^{2} \\
& {\left[\because \vec{a} \cdot \vec{a}=|\vec{a}|^{2} \quad \vec{b} \cdot \vec{b}=|\vec{b}|^{2} \quad \vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}\right.}
\end{aligned}
$$

15. Find $\vec{a} \times \vec{b}$ if

$$
\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}, \quad \vec{b}=3 \hat{i}+5 \hat{j}-2 \hat{k}
$$

Ans:

$$
\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & 1 & 3 \\
3 & 5 & -2
\end{array}\right|
$$

$$
\begin{gathered}
=\hat{i}(-2-15)-\hat{j}(-4-9)+\hat{k}(10-3) \\
=-17 \hat{i}+13 \hat{j}+7 \hat{k}
\end{gathered}
$$

16. Is the measure of $30 \mathrm{~m} / \mathrm{s}$ towards north is scalar or vector.

Ans: Scalar
17. Compute the magnitude of

$$
\vec{b}=2 \hat{i}-7 \hat{j}-3 \hat{k}
$$

Ans:

$$
|\vec{b}|=\sqrt{(2)^{2}+(-7)^{2}+(-3)^{2}}
$$

$=\sqrt{4+49+9}$
$=\sqrt{62}$
18. Find the direction ratios and the direction cosines of the vector $\vec{r}=\hat{i}+2 \hat{j}-\hat{k}$

Ans: D.R of \vec{r} are 1, 2,-1

$$
\bar{r}=\sqrt{1+4+1}=\sqrt{6}
$$

D. C of

$$
\bar{r} \operatorname{are} \frac{1}{\sqrt{6}} ; \frac{2}{\sqrt{6}}, \frac{-1}{\sqrt{6}}
$$

19. \vec{a} Is unit vector and

$$
(\vec{x}-\vec{a})(\vec{x}+\vec{a})=8,
$$

Then find $|\vec{x}|$
Ans: $\quad|\vec{a}|=1$

$$
\begin{aligned}
& (\vec{x}-\vec{a}) \cdot(\bar{x}+\vec{a})=8 \\
& |\vec{x}|^{2}-1=8
\end{aligned}
$$

$|\vec{x}|^{2}=9$
$|\vec{x}|=3$
20. Show that

$$
(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2(\vec{a} \times \vec{b})
$$

\vec{a} and \vec{b}.
Ans:

$$
L . H . S=(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})
$$

$$
=\vec{a} \times \vec{a}+\vec{a} \times \vec{b}-\vec{b} \times \vec{a}-\vec{b} \times \vec{b}
$$

$$
=0+\vec{a} \times \vec{b}+\vec{a} \times \vec{b}-0
$$

$$
=2(\vec{a} \times \vec{b})\left[\begin{array}{l}
\because \vec{a} \times \vec{b}=0 \\
\vec{a} \times \vec{b}=-\vec{b} \times \vec{a}
\end{array}\right.
$$

Back to Top \uparrow Questions

4 Mark Questions

1. Find the unit vector in the direction of the sum of the vectors

$$
\vec{a}=2 \hat{i}+2 \hat{j}-5 \hat{k}, \quad \vec{b}=2 \hat{i}+\hat{j}+3 \hat{k}
$$

Ans: Let $\vec{c}=\vec{a}+\vec{b}$

$$
\begin{gathered}
=(2 \hat{i}+2 \hat{j}-5 \hat{k})+(2 \hat{i}+\hat{j}+3 \hat{k}) \\
=4 \hat{i}+3 \hat{j}-2 \hat{k} \\
|\vec{c}|=\sqrt{16+9+4}
\end{gathered}
$$

$$
=\sqrt{29}
$$

The required unit vector is

$$
\begin{aligned}
& \hat{c}=\frac{\vec{c}}{|\vec{c}|} \\
& =\frac{4 \hat{i}+3 \hat{j}-2 \hat{k}}{\sqrt{29}}
\end{aligned}
$$

$$
=\frac{4}{\sqrt{29}} \hat{i}+\frac{3}{\sqrt{29}} \hat{j}-\frac{2}{\sqrt{29}} \hat{k}
$$

2. Show that the points

$$
A(2 \hat{i}-\hat{j}+\hat{k}), B(\hat{i}-3 \hat{j}-5 \hat{k}), C(3 \hat{i}-4 \hat{j}-4 \hat{k})
$$

are the vertices of right angled triangle.
Ans:

$$
\overrightarrow{A B}=-\hat{i}-2 \hat{j}-6 \hat{k}
$$

$$
\begin{aligned}
& \overrightarrow{B C}=2 \hat{i}-\hat{j}+\hat{k} \\
& \overrightarrow{C A}=-\hat{i}+3 \hat{j}+5 \hat{k}
\end{aligned}
$$

$$
\begin{aligned}
& |\overrightarrow{A B}|^{2}=41 \\
& |\overrightarrow{B C}|=6
\end{aligned}
$$

$|\overrightarrow{C A}|=35$

$$
|\overrightarrow{A B}|^{2}=|\overrightarrow{B C}|^{2}+|\overrightarrow{C A}|^{2}
$$

Hence, the Δ is a right angled triangle.

3. Show that the points

$$
A(-2 \hat{i}+3 \hat{j}+5 \hat{k}), B(\hat{i}+2 \hat{j}+3 \hat{k}) \text { and } C(\hat{i}-\hat{k})
$$

are collinear.
Ans:

$$
\begin{aligned}
& \overrightarrow{A B}=3 \hat{i}-\hat{j}-2 \hat{k} \\
& \overrightarrow{B C}=6 \hat{i}-2 \hat{j}-4 \hat{k} \\
& \overrightarrow{C A}=9 \hat{i}-3 \hat{j}-6 \hat{k} \\
& \text { and }|\overrightarrow{A C}|=3 \sqrt{14} \\
& |\overrightarrow{A B}|=\sqrt{14}, \overrightarrow{B C}=2 \sqrt{14} \\
& |\overrightarrow{A C}|=|\overrightarrow{A B}|+|\overrightarrow{B C}|
\end{aligned}
$$

Hence points A, B, C are collinear.
4. If $\vec{a}, \vec{b}, \vec{c}$ are unit vector such that $\vec{a}+\vec{b}+\vec{c}=0$ find the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$ Ans:

$$
|\vec{a}|=1,|\vec{b}|=1,|\vec{c}|=1,
$$

$$
\begin{aligned}
& \vec{a}+\vec{b}+\vec{c}=0 \quad \text { (Given) } \\
& \vec{a} \cdot(\vec{a}+\vec{b}+\vec{c}) \\
& \vec{a} \cdot \vec{a}+\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}=0 \\
& (\vec{a})^{2}+\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}=0 \\
& 1+\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}=0 \\
& \vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}=-1------(i) \\
& \text { similiorly } \\
& \vec{b} \cdot \vec{a}+\vec{b} \cdot \vec{c}=-1------(i i) \\
& \text { again } \\
& \vec{c} \cdot \vec{a}+\vec{c} \cdot \vec{b}=-1-----(i i i) \\
& \text { adding(i),(ii) and(iii) } \\
& 2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})=-3 \quad[\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a} \\
& \vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}=-3 / 2
\end{aligned}
$$

5. If

$$
\vec{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}, \quad \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}, \quad \vec{c}=3 \hat{i}+\hat{j}
$$

$$
\vec{a}+\lambda \vec{b} \text { is } \perp \text { to } \vec{c}
$$

is then find the value of λ.
Ans:

$$
\begin{gathered}
\vec{a}+\lambda \vec{b}=(2 \hat{i}+2 \hat{j}+3 \hat{k})+\lambda(-\hat{i}+2 \hat{j}+\hat{k}) \\
=(2-\lambda) \hat{i}+(2+2 \lambda) \hat{j}+(3+\lambda) \hat{k} \\
(\vec{a}+\lambda \vec{b}) \cdot \bar{c}=0[\because \vec{a}+\lambda \vec{b} \perp \vec{c} \\
{[(2-\lambda) \hat{i}+(2+2 \lambda) \hat{j}+(3+\lambda) \hat{k}] \cdot(3 \hat{i}+\hat{j})=0} \\
3(2-\lambda)+(2+2 \lambda)=0
\end{gathered}
$$

$$
-\lambda=-8
$$

$$
\lambda=8
$$

6. Consider two point P and Q with position vectors

$$
O \vec{P}=3 \vec{a}-2 \vec{b} \text { and } O \vec{Q}=\vec{a}+\vec{b}
$$

. Find the positions vector of a point R which divides the line joining P and Q in the ratio 2:1 (i) internally (ii) externally.
Ans: (i)

$$
O \vec{R}=\frac{2(\vec{a}+\vec{b})+1(3 \vec{a}-2 \vec{b})}{2+1}
$$

$=\frac{5 \vec{a}}{3}$
(ii)

$$
O \vec{R}=\frac{2(\vec{a}+\vec{b})-(3 \vec{a}-2 \vec{b})}{2-1}
$$

$$
=\frac{2 \vec{a}+2 \vec{b}-3 \vec{a}+2 \vec{b}}{1}
$$

$$
=4 \vec{b}-\vec{a}
$$

7. Show that the points A, B, C with position vectors

$$
-2 \vec{a}+3 \vec{b}+5 \vec{c}, \vec{a}+2 \vec{b}+3 \vec{c} \text { and } 7 \vec{a}-\vec{c}
$$

respectively are collinear.
Ans:

$$
O \vec{A}=-2 \vec{a}+3 \vec{b}+5 \vec{c}
$$

$$
O \vec{B}=\vec{a}+2 \vec{b}+3 \vec{c}
$$

$O \vec{C}=7 \vec{a}-\vec{c}$

$$
\begin{aligned}
\overrightarrow{A B} & =O \vec{B}-O \vec{A}=3 \vec{a}-\vec{b}-2 \vec{c} \\
\overrightarrow{B C} & =\overrightarrow{O C}-\overrightarrow{O B}=6 \vec{a}-2 \vec{b}-4 \vec{c} \\
& =2(3 \vec{a}-\vec{b}-2 \vec{c})
\end{aligned}
$$

$\overrightarrow{B C}=2 \overrightarrow{A B}$
Thus $\overrightarrow{A B} \| \overrightarrow{B C}$ but one point B is common to both vectors hence $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are collinear.
8. Find a unit vector \perp to each of the vectors

$$
(\vec{a}+\vec{b}) \text { and }(\vec{a}-\vec{b}) \text { where } \vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}
$$

Ans: A vector which is \perp to both

$$
(\vec{a}+\vec{b}) \operatorname{are}(\vec{a}-\vec{b})
$$

is giving by

$$
(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & 3 & 4 \\
0 & -1 & -2
\end{array}\right|
$$

$$
=-2 \hat{i}+4 \hat{j}-2 \hat{k}
$$

$$
\text { Let } \vec{c}=-2 \hat{i}+4 \hat{j}-2 \hat{k}
$$

$$
|\stackrel{\rightharpoonup}{c}|=\sqrt{4+16+4}
$$

$=\sqrt{24}$
$=2 \sqrt{6}$
Req. unit vector is

$$
\frac{\bar{c}}{|\vec{c}|}=-\frac{1}{\sqrt{6}} \hat{i}+\frac{2}{\sqrt{6}} \hat{j}-\frac{1}{\sqrt{6}} \hat{k}
$$

9. The scalar product of the vector $\hat{i}+\hat{j}+\hat{k}$ with a unit vector along the sum of vectors

$$
2 \hat{i}+4 \hat{j}-5 \hat{k}, \text { and } \lambda \hat{i}+2 \hat{j}+3 \hat{k}
$$

is equal the one. Find the value of λ
Ans:

$$
\vec{a}=2 \hat{i}+4 \hat{j}-5 \hat{k}
$$

$\vec{b}=\lambda \hat{i}+\hat{j}+3 \hat{k}$

$$
\vec{a}+\vec{b}=(2+\lambda) \hat{i}+6 \hat{j}-2 \hat{k}
$$

Unit vector along
$\vec{a}+\vec{b}=\frac{\vec{a}+\vec{b}}{|\vec{a}+\vec{b}|}$

$$
=\frac{(2+\lambda) \hat{i}+6 \hat{j}-2 \hat{k}}{\sqrt{(2+\lambda)^{2}+(6)^{2}+(-2)^{2}}}
$$

$$
=\frac{(2+\lambda) \hat{i}+6 \hat{j}-2 \hat{k}}{\sqrt{(2+\lambda)^{2}+40}}
$$

$$
A T Q \vec{c} \cdot(\vec{a}+\vec{b})=1
$$

$$
(\hat{i}+\hat{j}+\hat{k}) \cdot\left(\frac{(2+\lambda) \hat{i}+6 \hat{j}-2 \hat{k}}{(2+\lambda)^{2}+40}\right)=1
$$

$$
\frac{(2+\lambda)+6-2}{\sqrt{(2+\lambda)^{2}+40}}=1
$$

$$
2+\lambda+4=\sqrt{(2+\lambda)^{2}+40}
$$

sq.both site
$\lambda=1$
10. Find the area of the Δ with vertices $A(1,1,2) B(2,3,4)$ and $C(1,5,5)$.

Ans: A (1, 1, 2) B(2, 3, 4) C (1, 5, 5)

$$
\overrightarrow{O A}=\hat{i}+\hat{j}+2 \hat{k}
$$

$O B \quad=2 i^{\wedge}+3 j^{\wedge}+4 k^{\wedge} O B^{-}=2 i^{\wedge}+3 j^{\wedge}+4 k^{\wedge}$
$O C \quad=i^{\wedge}+5 j^{\wedge}+5 k^{\wedge} O C^{-}=i^{\wedge}+5 j^{\wedge}+5 k^{\wedge}$

$$
\begin{aligned}
& \overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}=\hat{i}+2 \hat{j}+2 \hat{k} \\
& \overrightarrow{A C}=\overrightarrow{O C}-\overrightarrow{O A}=4 \hat{j}+3 \hat{k}
\end{aligned}
$$

$$
\overrightarrow{A B} \times A \vec{C}=\left|\begin{array}{lll}
\hat{i} & \hat{j} & \hat{k} \\
1 & 2 & 2 \\
0 & 4 & 3
\end{array}\right|
$$

$$
=-2 \hat{i}-3 \hat{j}+4 \hat{k}
$$

$$
\begin{aligned}
& \text { Arae of } \triangle A B C=\frac{1}{2}|\overrightarrow{A B} \times A \vec{C}| \\
& =\frac{1}{2}\left|\sqrt{(-2)^{2}+(-3)^{2}+(4)^{2}}\right| \\
& =\frac{1}{2} \sqrt{29} \text { sq.unit }
\end{aligned}
$$

11. Show that the points $A(1,-2,-8) B(5,0,-2)$ and $C(11,3,7)$ are collinear, and find the ratio in which B divides $A C$.
Ans:A (1, -2, -8), B (5, 0, -2), C (11, 3, 7)

$$
\overrightarrow{O A}=1 \hat{i}-2 \hat{j}-8 \hat{k}
$$

$$
\overrightarrow{O B}=5 \hat{i}-0 \hat{j}-2 \hat{k}
$$

$$
\overrightarrow{O C}=11 \hat{i}+3 \hat{j}+7 \hat{k}
$$

$\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}$
$=4 \hat{i}+2 \hat{j}+6 \hat{k}$

$$
\begin{aligned}
& \overrightarrow{B C}=\overrightarrow{O C}-\overrightarrow{O B} \\
& =3(2 \hat{i}+\hat{j}+3 \hat{k}) \\
& =\frac{3}{2}(4 \hat{i}+2 \hat{j}+6 \hat{k})
\end{aligned}
$$

$\overrightarrow{B C}=\frac{3}{2} \overrightarrow{A B}$
Thus $\overrightarrow{B C} \| \overrightarrow{A B}$ and one point B is common there fore $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are collinear and B divides AC in 2:3.
12. Find a vector \vec{d} which is \perp to both \vec{a} and \vec{b} and $\vec{c} \cdot \vec{d}=15$

Let $\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}$

$$
\vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}
$$

$$
\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}
$$

$$
\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}
$$

Ans:

$$
\vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}
$$

$\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$

$$
\text { Let } \vec{d}=x \hat{i}+y \hat{j}+z \hat{k}
$$

$$
\begin{aligned}
& A T Q \vec{d} \cdot \vec{a}=0, \vec{d} \cdot \vec{b}=0 \text { and } \vec{c} \cdot \vec{d}=15 \\
& x+4 y+2 z=0-\cdots-(1) \\
& 3 x-2 y+7 z=0--\cdots-(2) \\
& 2 x-y+4 z=15-----(3)
\end{aligned}
$$

On solving equation (i) and (ii)

$=\frac{y}{2}=\frac{z}{1}=K$

$$
\frac{x}{28+4}=\frac{y}{6-7}=\frac{z}{-2-12}=K
$$

$$
x=32 k, y=-k, z=-14 k
$$

Put x, y, z in equation (iii)

$$
\begin{aligned}
& 2(32 k)-(-k)+4(-14 k)=15 \\
& 64 k+k-56 k=15 \\
& 9 k=15
\end{aligned}
$$

$$
y=-\frac{5}{3}=-\frac{5}{3}
$$

$$
\begin{gathered}
k=\frac{15}{9} \\
k=\frac{5}{3} \\
x=32 \times \frac{5}{3}=\frac{160}{3} \\
z=-14 \times \frac{5}{3}=-\frac{70}{3} \\
\vec{d}=\frac{160}{3} \hat{i}-\frac{5}{3} \hat{j}-\frac{70}{3} \hat{k}
\end{gathered}
$$

13. Let \vec{a}, \vec{b} and \vec{c} be three vectors such that

$$
|\vec{a}|=3,|\vec{b}|=4,|\vec{c}|=5
$$

and each one of them being \perp to the sum of the other two, find $|\vec{a}+\vec{b}+\vec{c}|$ Ans:

$$
\begin{aligned}
& \vec{a} \cdot(\vec{b}+\vec{c})=0, \vec{b} \cdot(\vec{c}+\vec{a})=0 \vec{c} \cdot(\vec{a}+\vec{b})=0,(\text { Given }) \\
& \begin{aligned}
&|\vec{a}+\vec{b}+\vec{c}|^{2}=(\vec{a}+\vec{b}+\vec{c}) \cdot(\vec{a}+\vec{b}+\vec{c}) \\
&=\vec{a} \cdot \vec{a}+\vec{a} \cdot(\vec{b}+\vec{c})+\vec{b} \cdot \vec{b}+\vec{b} \cdot(\vec{a}+\vec{c})+\vec{c} \cdot \vec{c}+(\vec{a}+\vec{b}) \\
&=|\vec{a}|^{2}+|\vec{b}|^{2}+|\vec{c}|^{2} \\
&=9+16+25
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& =50 \\
& |\vec{a}+\vec{b}+\vec{c}|=\sqrt{50}
\end{aligned}
$$

$$
=5 \sqrt{2}
$$

14. If $\vec{a}=4 \hat{i}+2 \hat{j}-\hat{k}$

$$
\vec{b}=5 \hat{i}+2 \hat{j}-3 \hat{k}
$$

Find the angel between the vectors

$$
\vec{a}+\vec{b} \text { and } \vec{a}-\vec{b}
$$

Ans:

$$
\begin{array}{ll}
\vec{a}+\vec{b}=9 \hat{i}+4 \hat{j}-4 \hat{k} \\
\vec{a}-\vec{b}=-\hat{i}+2 \hat{k} & (\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=-17 \\
|\vec{a}+\vec{b}|=\sqrt{113} \\
|\vec{a}-\vec{b}|=\sqrt{5} & \cos \theta=\frac{(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})}{|\vec{a}+\vec{b}||\vec{a}-\vec{b}|} \\
=\frac{-17}{\sqrt{113} \cdot \sqrt{5}} \\
\cos \theta=\frac{-17}{\sqrt{565}} & \theta=\cos ^{-1}\left(\frac{-17}{\sqrt{565}}\right)
\end{array}
$$

15. Find the sine of the angel between the vectors.
$\vec{a}=2 \hat{i}-\hat{j}+3 \hat{k}$
$\vec{b}=\hat{i}+3 \hat{j}+2 \hat{k}$
Ans:

$$
\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & -1 & 3 \\
1 & 3 & 2
\end{array}\right|
$$

$=-11 \hat{i}-\hat{j}+7 \hat{k}$

$$
\begin{aligned}
& \begin{aligned}
|\vec{a} \times \vec{b}|=\sqrt{(-11)^{2}+(-1)^{2}+(7)^{2}} \\
=\sqrt{171}=3 \sqrt{19}
\end{aligned} \\
& \sin \theta=\frac{|\vec{a} \times \vec{b}|}{|\vec{a}||\vec{b}|}=\frac{3 \sqrt{19}}{\sqrt{14} \cdot \sqrt{14}}=\frac{3}{14} \sqrt{19}
\end{aligned}
$$

16. Three vectors \vec{a}, \vec{b} and \vec{c} satisfy the condition $\vec{a}+\vec{b}+\vec{c}=0$ Evaluate the quantity

$$
\mu=\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}
$$

if

$$
|\vec{a}|=1,|\vec{b}|=4,|\vec{c}|=2
$$

Ans: $\vec{a}+\vec{b}+\vec{c}=0$

$$
\begin{aligned}
& \vec{a} \cdot(\vec{a}+\vec{b}+\vec{c})=0 \\
& \vec{a} \cdot \vec{a}+\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}=0
\end{aligned}
$$

$$
\begin{aligned}
& \vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}=-|\vec{a}|^{2} \\
& \vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}=-1----(i) \\
& \vec{b} \cdot \vec{a}+\vec{b} \cdot \vec{c}=-16--(\text { ii }) \\
& \vec{a} \cdot \vec{c}+\vec{b} \cdot \vec{c}=-4----(\text { iii) }
\end{aligned}
$$

Adding (i) (ii) and (iii)

$$
2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{a} \cdot \vec{c})=-21
$$

$$
\mu=\frac{-21}{2}
$$

17. If with reference to the right handed system of mutually \perp unit vectors $\hat{i}, \hat{j}, \hat{k}$ and \hat{k},

$$
\vec{\alpha}=3 \hat{i}-\hat{j}, \vec{\beta}=2 \hat{i}+\hat{j}-3 \hat{k}
$$

then express $\vec{\beta}$ in the form $\vec{\beta}=\vec{\beta}_{1}+\vec{\beta}_{2}$, where $\vec{\beta}_{1}$ is || to $\vec{\alpha}$ and $\overrightarrow{\beta_{2}}$ is \perp to $\vec{\alpha}$ Ans:

$$
\begin{gathered}
\text { Let } \vec{\beta}_{1}=\lambda \vec{\alpha} \quad\left[\because \vec{\beta}_{1} \| \text { to } \vec{\alpha}\right. \\
\vec{\beta}_{1}=\lambda(3 \hat{i}-\hat{j}) \\
=3 \hat{\lambda \hat{i}-\lambda \hat{j}} \\
\vec{\beta}_{2}=\vec{\beta}-\vec{\beta}_{1} \\
=(2 \hat{i}+\hat{j}-3 \hat{k})-(3 \hat{\lambda i}-\lambda \hat{j})
\end{gathered}
$$

$$
\begin{aligned}
& =(2-3 \lambda) \hat{i}+(1+\lambda) \hat{j}-3 \hat{k} \\
& \vec{\alpha} \cdot \vec{\beta}_{2}=0
\end{aligned} \quad\left[\because \vec{\beta}_{2} \perp \vec{\alpha}\right.
$$

$$
\begin{aligned}
& 3(2-3 \lambda)-(1+\lambda)=0 \\
& \lambda=\frac{1}{2}
\end{aligned}
$$

$\vec{\beta}_{1}=\frac{3}{2} \hat{i}-\frac{1}{2} \hat{j}$

$$
\vec{\beta}_{2}=\frac{1}{2} \hat{i}+\frac{3}{2} \hat{j}-3 \hat{k}
$$

18. If \vec{a}, \vec{b} and \vec{c} be three vectors such that $\vec{a}+\vec{b}+\vec{c}=0$ and

$$
|\vec{a}|=3,|\vec{b}|=5,|\vec{c}|=7
$$

find the angle between \vec{a} and \vec{b}.
Ans: $\vec{a}+\vec{b}+\vec{c}=0$
$\vec{a}+\vec{b}=-\vec{c}$

$$
\begin{aligned}
& (\vec{a}+\vec{b}) \cdot(-\bar{c})=-\vec{c} \cdot(-\bar{c}) \\
& (\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b})=\vec{c} \cdot \vec{c}
\end{aligned}
$$

$$
|\vec{a}|^{2}+2 \vec{a} \vec{b}+|\vec{b}|^{2}=|\vec{c}|^{2}
$$

$$
\vec{a} \cdot \vec{b}=\frac{49-9-25}{2}=\frac{15}{2}
$$

$\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$
$=\frac{1}{2}$
$\theta=60$
19. Find the area of the \|gm whose adjacent sides are represented by the vectors,

$$
\vec{a}=3 \hat{i}+\hat{j}-2 \hat{k}, \vec{b}=\hat{i}-3 \hat{j}+4 \hat{k}
$$

Ans:

$$
\begin{gathered}
\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
3 & 1 & -2 \\
1 & -3 & 4
\end{array}\right| \\
=-2 \hat{i}-14 \hat{j}-10 \hat{k} \\
\text { req.area }=|\vec{a} \times \vec{b}| \\
=\sqrt{(-2)^{2}+(-14)^{2}+(-10)^{2}}=10 \sqrt{3}
\end{gathered}
$$

20. Find the vector joining the points $P(2,3,0)$ and $Q(-1,-2,-4)$ directed from P to Q. Also find direction ratio and direction cosine.
Ans:

$$
\begin{gathered}
\overrightarrow{P Q}=(-1-2) \hat{i}+(-2-3) \hat{j}+(-4-0) \hat{k} \\
=-3 \hat{i}-5 \hat{j}-4 \hat{k} \\
D R \text { are }-3,-5,-4 \\
|\overrightarrow{P Q}|=\sqrt{9+25+16} \\
D . C \text { are } \frac{-3}{\sqrt{50}}, \frac{-5}{\sqrt{50}}, \frac{-4}{\sqrt{50}}
\end{gathered}
$$

