Important Questions Class 12 Maths Chapter 11 Three Dimensional Geometry

1 Mark Questions

1. Find the directions cosines of x, y and z axis.

Ans. 1,0,0, 0, 1,0 0,0,1
2.Find the vector equation for the line passing through the points $(-1,0,2)$ and $(3,4,6)$ Ans. Let \vec{a} and \vec{b} be the p.v of the points $A(-1,0,2)$ and $B(3,46)$

$$
\begin{aligned}
\vec{r} & =\vec{a}+\lambda(\vec{b}-\vec{a}) \\
& =(-\hat{i}+2 \hat{j})+\lambda(4 \hat{i}+4 \hat{j}+4 \hat{k})
\end{aligned}
$$

3.Find the angle between the vector having direction ratios 3,4,5 and 4, $-3,5$.

Ans. Let $a_{1}=3, b_{1}=4, c_{1}=5$ and $a_{2}=4, b_{2}=-3, c_{2}=5$

$$
\begin{aligned}
& \cos \theta= \begin{array}{cll}
a_{1} & a_{2}+b_{1} & b_{2}+c_{1} \\
c_{2}
\end{array} \\
&\left.\begin{array}{ll}
\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} & \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}
\end{array}\right)=\frac{1}{2} \\
& \theta=60^{\circ}
\end{aligned}
$$

4. What is the direction ratios of the line segment joining $P\left(x_{1} y_{1} z_{1}\right)$ and $Q\left(x_{2} y_{2} z_{2}\right)$ Ans. $x_{2}-x_{1}, y_{2}-y$, and $z_{2}-z_{1}$ are the direction ratio of the line segment $P Q$.
5. The Cartesian equation of a line is

$$
\frac{x+3}{2}=\frac{y-5}{4}=\frac{z+6}{2}
$$

Find the vector equation for the line.
Ans. Comparing the given equation with the standard equation form

$$
\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}
$$

$$
\vec{r}=(-3 \hat{i}+5 \hat{j}+6 \hat{k})+\lambda(2 \hat{i}+4 \hat{j}+2 \hat{k})
$$

6.Show that the lines

$$
\frac{x+3}{-3}=\frac{y-1}{1}=\frac{z-5}{5} \text { and } \quad \frac{x+1}{-1}=\frac{y-2}{2}=\frac{z-5}{5}
$$

are coplanar.
Ans. $x_{1}=-3, y_{1}=1, z_{1}=5$
$a_{1}=-3, b_{1}=1, c_{1}=5$
$x_{2}=-1, y_{2}=2, z_{2}=5$
$a_{2}=-1, b_{2}=2, c_{2}=5$

$$
\left|\begin{array}{ccc}
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right|=\left|\begin{array}{ccc}
2 & 1 & 0 \\
-3 & 1 & 5 \\
-1 & 2 & 5
\end{array}\right|=0
$$

Therefore lines are coplanar.
7. If a line has the direction ratios $-18,12,-4$ then what are its direction cosines

Ans. $a=-18, b=12, c=-4$
$a^{2}+b^{2}+c^{2}=(-18)^{2}+(12)^{2}+(-4)^{2}$
$=484$

$$
l=\frac{-18}{\sqrt{484}}=\frac{-18}{22}=\frac{-9}{11}
$$

$$
\begin{aligned}
& m=\frac{12}{22}=\frac{6}{11} \\
& n=\frac{-4}{22}=\frac{-2}{11}
\end{aligned}
$$

8. Find the angle between the pair of line given by

$$
\begin{aligned}
& \vec{r}=3 \hat{i}+2 \hat{j}-4 \hat{k}+\lambda(\hat{i}+2 \hat{j}+2 \hat{k}) \\
& \vec{r}=5 \hat{i}-2 \hat{j}+\mu(3 \hat{i}+2 \hat{j}+6 \hat{k})
\end{aligned}
$$

Ans.

$$
\begin{gathered}
\vec{b}_{1}=\hat{i}+2 \hat{j}+2 \hat{k} \\
\vec{b}_{2}=3 \hat{i}+2 \hat{j}+6 \hat{k} \\
\cos \theta=\left|\frac{\vec{b}_{1} \cdot \vec{b}_{2}}{\left|\vec{b}_{1}\right|\left|\vec{b}_{2}\right|}\right|=\frac{19}{21}
\end{gathered}
$$

9. Prove that the points $A(2,1,3) B(5,0,5)$ and $C(-4,3,-1)$ are collinear Ans. The equations of the line $A B$ are

$$
\begin{align*}
& \frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}} \\
& \frac{x-2}{5-2}=\frac{y-1}{0-1}=\frac{z-3}{5-3} \\
& \frac{x-2}{3}=\frac{y-1}{-1}=\frac{z-3}{2} \tag{1}
\end{align*}
$$

If A, B, C are collinear, C lies in equation (1)

$$
\frac{-4-2}{3}=\frac{3-1}{-1}=\frac{-1-3}{2}
$$

$-2=-2=-2$
Hence A, B, C are collinear
10. Find the direction cosines of the line passing through the two points $(2,4,-5)$ and $(1,2,3)$.
Ans. Let $P(-2,4,-5) Q(1,2,3)$

$$
P Q=\sqrt{(1+2)^{2}+(2-4)^{2}+(3+5)^{2}}
$$

$=\sqrt{9+4+64}$

$$
=\sqrt{77}
$$

the direction cos ines of theline
Joining two point is

$$
\begin{aligned}
& \frac{1+2}{\sqrt{77}}, \frac{2-4}{\sqrt{77}}, \frac{3+4}{\sqrt{77}} \\
& \frac{3}{\sqrt{33}}, \frac{-2}{\sqrt{77}}, \frac{8}{\sqrt{77}}
\end{aligned}
$$

11. Find the equation of the plane with intercepts 2,3 and 4 on the x, y and z axis respectively.
Ans. Let the equation of the plane be

$$
\begin{aligned}
& \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 \\
& \frac{x}{2}+\frac{y}{3}+\frac{z}{4}=1
\end{aligned}
$$

$$
6 x+4 y+3 z=12
$$

12.If the equations of a line $A B$ is

$$
\frac{x-3}{1}=\frac{y+2}{-2}=\frac{z-5}{4}
$$

find the directions ratio of line parallel to $A B$.
Ans.

$$
\frac{x-3}{1}=\frac{y+2}{-2}=\frac{z-5}{4}
$$

the direction ratios of a line parallel to $A B$ are $1,-2,4$
13. If the line has direction ratios $2,-1,-2$ determine its direction Cosines.

Ans.

$$
\frac{2}{\sqrt{(2)^{2}+(-1)^{2}+(-2)^{2}}}, \frac{-1}{\sqrt{(2)^{2}+(-1)^{2}+(-2)^{2}}}, \frac{-2}{\sqrt{(2)^{2}+(-1)^{2}+(-2)^{2}}}=\frac{2}{3}, \frac{-1}{3}, \frac{-2}{3}
$$

14. The Cartesian equation of a line is

$$
\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}
$$

. Write its vector form
Ans. $\vec{r}=\vec{a}+\lambda \vec{b}$

$$
\begin{gathered}
\vec{a}=5 \hat{i}-4 \hat{j}+6 \hat{k} \\
\vec{b}=3 \hat{i}+7 \hat{j}+2 \hat{k} \\
\vec{r}=(5 \hat{i}-4 \hat{j}+6 \hat{k})+\lambda(3 \hat{i}+7 \hat{j}+2 \hat{k})
\end{gathered}
$$

15. Cartesian equation of a line $A B$ is

$$
\frac{2 x-1}{2}=\frac{4-y}{7}=\frac{z+1}{2}
$$

write the direction ratios of a line parallel to $A B$.
Ans. Given equation of a line can be written is

$$
\frac{x-\frac{1}{2}}{1}=\frac{y-4}{-7}=\frac{z+1}{2}
$$

The direction ratios of a line parallel to AB are 1, $-7,2$.

4 Mark Questions

1. Find the vector and Cartesian equation of the line through the point ($5,2,-4$) and which is parallel to vector $3 \hat{i}+2 \hat{j}-8 \hat{k}$
Ans:

$$
\vec{a}=5 \hat{i}+2 \hat{j}-4 \hat{k}, \vec{b}=3 \hat{i}+2 \hat{j}-8 \hat{k}
$$

Vector equation of line is

$$
\vec{r}=\vec{a}+\lambda \vec{b}
$$

$$
=5 \hat{i}+2 \hat{j}-4 \hat{k}+\lambda(3 \hat{i}+2 \hat{j}-8 \hat{k})
$$

Cartesian equation is

$$
\begin{gathered}
x \hat{i}+y \hat{j}+z \hat{k}=5 \hat{i}+2 \hat{j}-4 \hat{k}+\lambda(3 \hat{i}+2 \hat{j}-8 \hat{k}) \\
x \hat{i}+y \hat{j}+z \hat{k}=(5+3 \lambda) \hat{i}+(2+2 \lambda) \hat{j}+(-4-8 \lambda) \hat{k} \\
x=5+3 \lambda, y=2+2 \lambda, z=-4-8 \lambda \\
\frac{x-5}{3}=\frac{y-2}{2}=\frac{z+4}{-8}
\end{gathered}
$$

2. Find the angle between the lines

$$
\begin{gathered}
\vec{r}=(3 \hat{i}+\hat{j}-2 \hat{k})+\lambda(\hat{i}-\hat{j}-2 \widehat{k}) \\
\vec{r}=(2 \hat{i}-\hat{j}-56 \hat{k})+\mu(3 \hat{i}-5 \hat{j}-4 \hat{k})
\end{gathered}
$$

Ans:

Let θ is the angle between the given lines

$$
\begin{gathered}
\vec{b}_{1}=\hat{i}-\hat{j}-2 \hat{k} \text { and } \vec{b}_{2}=3 \hat{i}-5 \hat{j}-4 \hat{k} \\
\cos \theta=\left|\frac{\vec{b}_{1} \cdot \vec{b}_{2}}{\left|\vec{b}_{1}\right|\left|\vec{b}_{2}\right|}\right|
\end{gathered}
$$

$$
\frac{16}{\sqrt{6} \quad 5 \sqrt{2}}
$$

$$
=\frac{816 \sqrt{3}}{2 \times 3 \times 5}
$$

$$
\cos \theta=\frac{8 \sqrt{3}}{15}
$$

$$
\begin{gathered}
\left|\frac{(\hat{i}-\hat{j}-2 \hat{k}) \cdot(3 \hat{i}-5 \hat{j}-4 \hat{k})}{|\hat{i}-\hat{j}-2 \hat{k}||3 \hat{i j}-5 \hat{j}-4 \hat{k}|}\right| \\
=\left|\frac{3+5+8}{\sqrt{6} \sqrt{50}}\right|=\frac{16}{\sqrt{50}} \\
\frac{16}{\sqrt{2} \times \sqrt{3} \times \sqrt{5} \times \sqrt{2}} \times \frac{\sqrt{3}}{\sqrt{3}} \\
\theta=\cos ^{-1}\left(\frac{8 \sqrt{3}}{15}\right)
\end{gathered}
$$

3. Find the shortest distance between the lines

$$
\begin{gathered}
\vec{r}=(\hat{i}+2 \hat{j}+\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k}) \\
\vec{r}=(2 \hat{i}-\hat{j}-\vec{k})+\mu(2 \hat{i}+\hat{j}+2 \hat{k})
\end{gathered}
$$

Ans:

$$
\vec{a}_{1}=\hat{i}+2 \hat{j}+\hat{k}, \vec{b}_{1}=\hat{i}-\hat{j}+\hat{k}
$$

$$
\vec{a}_{2}=2 \hat{i}-\hat{j}-\hat{k}, \vec{b}_{1}=2 \hat{i}+\hat{j}+2 \hat{k}
$$

$$
\left.\begin{array}{rl}
d & =\left|\frac{\left(\vec{a}_{2}-\vec{a}_{1}\right) \cdot\left(\vec{b}_{1} \times \vec{b}_{2}\right)}{\left|\vec{b}_{1} \times \vec{b}_{2}\right|}\right| \\
& \vec{a}_{2}-\vec{a}_{1}=\hat{i}-3 \hat{j}-2 \hat{k}
\end{array}\right)
$$

4. Find the direction cosines of the unit vector \perp to the plane

$$
\vec{r} \cdot(6 \hat{i}-3 \hat{j}-2 \hat{k})+1=0
$$

passing through the origin.
Ans:

$$
\vec{r} \cdot(6 \hat{i}-3 \hat{j}-2 \hat{k})=-1
$$

$$
\begin{equation*}
\hat{r} \cdot(-6 \hat{i}+3 \hat{j}+2 \hat{k})=1 \tag{1}
\end{equation*}
$$

$$
|-6 \hat{i}+3 \hat{j}+2 \hat{k}|=\sqrt{36+9+4}=7
$$

Dividing equation 1 by 7

$$
\begin{gathered}
\vec{r} \cdot\left(\frac{-6}{7} \hat{i}+\frac{3}{7} \hat{j}+\frac{2}{7} \hat{k}\right)=\frac{1}{7} \\
\hat{n}=\frac{-6}{7} \hat{i}+\frac{3}{7} \hat{j}+\frac{2}{7} \hat{k}[\because \cdot \vec{r} \vec{n}=d
\end{gathered}
$$

Hence direction cosines of \hat{n} is $\frac{-6}{7}, \frac{3}{5}, \frac{2}{7}$
5. Find the angle between the two planes $3 x-6 y+2 z=7$ and $2 x+2 y-2 z=5$

Ans: Comparing the giving eq of the planes with the equations
$A_{1} x+B_{1} y+C_{1} Z+D=0, A_{2} x+B_{2} y+C_{2} Z+D_{2}=0$
$A_{1}=3, B_{1}=-6, C_{1}=2$
$A_{2}=2, B_{2}=2, C_{2}=-2$
6. Find the shortest between the I_{1} and I_{2} whose vectors equations are

$$
\begin{aligned}
& \vec{r}=\hat{i}+\hat{j}+\lambda(2 \hat{i}-\hat{j}+\hat{k}) \\
& \vec{r}=2 \hat{i}+\hat{j}-\hat{k}+\mu(3 \hat{i}-5 \hat{j}+2 \hat{k})
\end{aligned}
$$

Ans:

$$
\vec{a}_{1}=\hat{i}+\hat{j}, \vec{b}_{1}=2 \hat{i}-\hat{j}+\hat{k}
$$

$$
\begin{aligned}
& \vec{a}_{2}=2 \hat{i}+\hat{j}-\hat{k}, \vec{b}_{2}=3 \hat{i}-5 \hat{j}+2 \hat{k} \\
& \vec{a}_{2}-\vec{a}_{1}=\hat{i}-\hat{k}
\end{aligned}
$$

$$
\vec{b}_{1} \times \vec{b}_{2}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & -1 & 1 \\
3 & -5 & 2
\end{array}\right|
$$

$$
\begin{gathered}
=3 \hat{i}-\hat{j}-7 \hat{k} \\
\left|\vec{b}_{1} \times \vec{b}_{2}\right|=\sqrt{59} \\
d=\left|\frac{\left(\vec{b}_{1} \times \vec{b}_{2}\right) \cdot\left(\vec{a}_{2}-\vec{a}_{1}\right)}{\left|\vec{b}_{1} \times \vec{b}_{2}\right|}\right|=\frac{|3-0+7|}{\sqrt{59}}=\frac{10}{\sqrt{59}}
\end{gathered}
$$

7. Find the angel between lines

$$
\begin{aligned}
& \vec{r}=(2 \hat{i}-5 \hat{j}+\hat{k})+\lambda(3 \hat{i}+2 \hat{j}+6 \hat{k}) \\
& \vec{r}=(7 \hat{i}-6 \hat{k}) \mu(\hat{i}+2 \hat{j}+2 \hat{k})
\end{aligned}
$$

Ans:

$$
\vec{b}_{1}=3 \hat{i}+2 \hat{j}+6 \hat{k}
$$

$$
\vec{b}_{2}=\hat{i}+2 \hat{j}+2 \hat{k}
$$

The angle θ between them is given by

$$
\begin{gathered}
\cos \theta=\left|\frac{\vec{b}_{1} \cdot \vec{b}_{2}}{\left|\left|\vec{b}_{1}\right|\right| \vec{b}_{2} \mid}\right| \\
\left|\frac{(3 \hat{i}+2 \hat{j}+6 \hat{k}) \cdot(\hat{i}+2 \hat{j}+2 \hat{k})}{|3 \hat{i}+2 \hat{j}+6 \hat{k}||\hat{i}+2 \hat{j}+2 \hat{k}|}\right|
\end{gathered}
$$

$$
\left|\frac{3+4+12}{\sqrt{49} \sqrt{9}}\right|
$$

$$
=\frac{19}{7 \times 3}=\frac{19}{21}
$$

8. Show that the lines

$$
\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1} \text { and } \frac{x}{1}=\frac{y}{2}=\frac{z}{3}
$$

Are perpendicular to each others

Ans:

$$
\begin{aligned}
& \frac{x-5}{7}=\frac{y-(-2)}{-5}=\frac{z-0}{1} \\
& \frac{x-0}{1}=\frac{y-0}{2}=\frac{z-0}{3} \\
& a_{1}=7, b_{1}=-5, c_{1}=1 \\
& a_{2}=1, b_{2}=2, c_{2}=3
\end{aligned}
$$

For \perp
$a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$
L.H. S

$$
=7 \times 1+(-5 \times 2)+1 \times 3
$$

$=7-10+3$
$=0$

$$
\text { hence } \quad l_{1} \perp l_{2}
$$

9.Find the vector equations of the plane passing through the points $R(2,5,-3)$, Q(-2,-3,5) and T (5,3,-3)
Ans:Let

$$
\begin{aligned}
& \vec{a}=2 \hat{i}+5 \hat{j}-3 \hat{k} \\
& \vec{b}=-2 \hat{i}-3 \hat{j}+5 \hat{k}
\end{aligned}
$$

$$
\vec{c}=5 \hat{i}+3 \hat{j}-3 \hat{k}
$$

Vector equation is

$$
\begin{gathered}
(\vec{r}-\vec{a}) \cdot[(\vec{b}-\vec{a}) \times(\vec{c}-\vec{a})]=0 \\
{[\vec{r}-(2 \hat{i}+5 \hat{j}-3 \hat{k})] \cdot[(-4 \hat{i}-8 \hat{j}+8 \hat{k}) \times(3 \hat{i}-2 \hat{j})]=0}
\end{gathered}
$$

10. Find the Cartesian equation of the plane

$$
\begin{aligned}
& \vec{r}(\hat{i}+\hat{j}-\hat{k})=2 \\
& =\left|\frac{-10}{7 \times 2 \sqrt{3}}\right| \\
& =\frac{5}{7 \sqrt{3}}=\frac{5 \sqrt{3}}{21} \\
& \cos \theta=\left|\frac{A_{1} A_{2}+B_{1} B_{2}+C_{1} C_{2}}{\sqrt{A_{1}^{2}+B_{12}+C_{1}^{2}} \sqrt{A_{2}^{2}+B_{2}^{2}+C_{2}^{2}}}\right| \\
& \theta=\operatorname{COS}^{-1}\left(\frac{5 \sqrt{3}}{21}\right)
\end{aligned}
$$

Ans:Let

$$
\vec{r}=x \hat{i}+y \hat{i}+z \hat{k}
$$

$$
\vec{r} \cdot(\hat{i}+\hat{j}-\hat{k})=2
$$

$$
(x \hat{i}+y \hat{i}+z \hat{k})(\hat{i}+\hat{j}-\hat{k})=2
$$

$x+y-z=2$
Which is the required equation of plane.
11. find the distance between the lines I_{1} and I_{2} given by

$$
\begin{aligned}
& \vec{r}=\hat{i}+2 \hat{j}-4 \hat{k}+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k}) \\
& \vec{r}=3 \hat{i}+3 \hat{j}-5 \hat{k}+\mu(2 \hat{i}+3 \hat{j}+6 \hat{k})
\end{aligned}
$$

Ans:

$$
\begin{aligned}
& \vec{a}_{1}=\hat{i}+2 \hat{j}-4 \hat{k} \\
& \vec{a}_{2}=3 \hat{i}+3 \hat{j}-5 \hat{k} \\
& \text { since } \vec{b}_{1}=\vec{b}_{2}
\end{aligned}
$$

Hence line are parallel

$$
\vec{a}_{2}-\vec{a}=2 \hat{i}-\hat{j}-\hat{k}
$$

$$
\vec{b} \times\left(\vec{a}_{2}-\vec{a}\right)=\left|\begin{array}{ccc}
i & j & k \\
2 & 3 & 6 \\
2 & 1 & -1
\end{array}\right|
$$

$$
d=\left|\frac{\vec{b} \times\left(\vec{a}_{2}-\vec{a}_{1}\right)}{|\vec{b}|}\right|
$$

$$
\frac{|-9 \hat{i}+14 \hat{j}-4 \hat{k}|}{\sqrt{49}}
$$

$$
\frac{\sqrt{293}}{\sqrt{49}}=\frac{\sqrt{293}}{7}
$$

12. Find the angle between lines

$$
\frac{x}{2}=\frac{y}{2}=\frac{z}{1}, \frac{x-5}{4}=\frac{y-2}{1}=\frac{z-3}{8}
$$

Ans:

$$
\frac{x-0}{2}=\frac{y-0}{2}=\frac{z-0}{1}
$$

$$
\begin{aligned}
& \frac{x-5}{4}=\frac{y-2}{1}=\frac{z-3}{8} \\
& a_{1}=2, b_{1}=2, c_{1}=1 \\
& a_{2}=4, b_{2}=1, c_{2}=8 \\
& \cos \theta=\frac{\left|\vec{b}_{1} \cdot \vec{b}_{2}\right|}{\left|\vec{b}_{1}\right|\left|\vec{b}_{2}\right|} \\
& =\left|\frac{2(4)+2(1)+1(8)}{\sqrt{2^{2}+2^{2}+1} \sqrt{4^{2}+1^{2}+8^{2}}}\right| \\
& =\left|\frac{8+2+8}{\sqrt{9} \sqrt{81}}\right| \\
& =\frac{18}{27} \\
& =\frac{2}{3} \\
& \theta=\cos ^{-1}\left(\frac{2}{3}\right)
\end{aligned}
$$

13. Find the shortest distance between the lines

$$
\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1} \text { and } \frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}
$$

Ans: $\vec{a}_{1}=-\hat{i}-\hat{j}-\hat{k}$

$$
\begin{gathered}
\vec{a}_{2}=3 \hat{i}+5 \hat{j}+7 \hat{k} \\
\vec{b}_{1}=7 \hat{i}-6 \hat{j}+1 \hat{k} \\
\vec{b}_{2}=\hat{i}-2 \hat{j}+\hat{k} \\
\vec{a}_{2}-a_{1}=4 \hat{i}+6 \hat{j}+8 \hat{k} \\
\vec{b}_{1} \times \vec{b}_{2}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
7 & -6 & 1 \\
1 & -2 & 1
\end{array}\right| \\
=-4 i-6 j-8 k \\
\left|\vec{b}_{1} \times \vec{b}_{2}\right|=\sqrt{(-4)^{2}+(-6)^{2}+(-8)^{2}} \\
=\sqrt{116} \\
=2 \sqrt{29} \\
d=\left|\frac{\left.\mid \vec{a}_{2}-\vec{a}_{1}\right)\left(b_{1} \times b_{2}\right)}{\mid \vec{b}_{1} \times \vec{b}_{2}}\right| \\
=\left|\frac{-116}{2 \sqrt{29}}\right|=\frac{y y_{658}}{2 \sqrt{29}} \\
=2 \sqrt{29}
\end{gathered}
$$

14. Find the vector and Cartesian equations of the plane which passes through the point $(5,2,-4)$ and \perp to the line with direction ratios $(2,3,-1)$ Ans:

$$
\vec{a}=5 \hat{i}+2 \hat{j}-4 \hat{k}
$$

$$
\vec{N}=2 \hat{i}+3 \hat{j}-\hat{k}
$$

Vector equation is

$$
\begin{aligned}
& (\vec{r}-\vec{a}) \cdot \vec{N}=0 \\
& {[\vec{r}-(5 \hat{i}+2 \hat{j}-4 \hat{k})] \cdot(2 \hat{i}+3 \hat{j}-\hat{k})=0}
\end{aligned}
$$

Cartesian equation is

$$
\begin{gathered}
\vec{r}=x \hat{i}+y \hat{j}+z \hat{k} \\
{[x \hat{i}+y \hat{j}+z \hat{k}-5 \hat{j}-2 \hat{j}+4 \hat{k}] \cdot[2 \hat{i}+3 \hat{j}-\hat{k}]=0} \\
((x-5) \hat{i}+(y-2) \hat{j}+(z+4) \hat{k}) \cdot(2 \hat{i}+3 \hat{j}-\hat{k})=0 \\
2(x-5)+3(y-2)-(z+4)=0 \\
2 x-10+3 y-6-z-4=0 \\
2 x+3 y-z=20
\end{gathered}
$$

15. Find the Cartesian equation of the plane

$$
\vec{r}[(5-2 t) \hat{i}+(3-t) \hat{j}+(25+t) \hat{k}]=15
$$

Ans:

$$
\vec{r}[(5-2 t) \hat{i}+(3-t) \hat{j}+(25+t) \hat{k}]=15
$$

$$
\begin{aligned}
& (x \hat{i}+y \hat{j}+z \hat{k}) \cdot[(5-2 t) \hat{i}+(3-t) \hat{j}+(25+t) \hat{k}]=15 \\
& (5-2 t) n+(3-t) y+(25+t) k-z=15
\end{aligned}
$$

16. Find the distance of a point $(2,5,-3)$ from the plane

$$
\vec{r} \cdot(6 \hat{i}-3 \hat{j}+2 \hat{k})=4
$$

Ans:

$$
\begin{gathered}
\vec{a}=2 \hat{i}+5 \hat{j}-3 \hat{k} \\
\vec{N}=6 \hat{i}-3 \hat{j}+2 \hat{k}, d=4 \\
d=\frac{|\vec{a} \cdot \vec{N} \cdot d|}{|\vec{N}|} \quad[\because \vec{r} \cdot \vec{N}=d \\
=\frac{|(2 \hat{i}+5 \hat{j}-3 \hat{k}) \cdot(6 \hat{i}-3 \hat{j}+2 \hat{k})-4|}{|6 \hat{i}-3 \hat{j}+2 \hat{k}|} \\
=\frac{|12-15-6-4|}{\sqrt{36+9+4}}=\frac{13}{7}
\end{gathered}
$$

17. Find the shortest distance

$$
\vec{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(\hat{i}-3 \hat{j}+2 \hat{k}) \text { and } \vec{r}=(4 \hat{i}+5 \hat{j}+6 \hat{k})+\mu(2 \hat{i}+3 \hat{j}+\hat{k})
$$

Ans:

$$
\vec{a}_{1}=\hat{i}+2 \hat{j}+3 \hat{k}
$$

$$
\begin{aligned}
& \vec{b}_{1}=\hat{i}-3 \hat{j}+2 \hat{k} \\
& \vec{a}_{2}=4 \hat{i}+5 \hat{j}+6 \hat{k} \\
& \vec{b}_{2}=2 \hat{i}+3 \hat{j}+\hat{k} \\
& \vec{a}_{2}-\vec{a}_{1}=3 \hat{i}+3 \hat{j}+3 \hat{k}
\end{aligned}
$$

$$
\vec{b}_{1} \times \vec{b}_{2}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & -3 & 2 \\
2 & 3 & 1
\end{array}\right|
$$

$=-9 \hat{i}+3 \hat{j}+9 \hat{k}$

$$
\begin{aligned}
d & =\frac{\left(\vec{a}_{2}-\vec{a}_{2}\right) \cdot\left(\vec{b}_{1} \times \vec{b}_{2}\right)}{\left|\vec{b}_{1} \times \vec{b}_{2}\right|} \\
& =\left|\frac{9}{3 \sqrt{19}}\right|=\frac{3}{\sqrt{19}}
\end{aligned}
$$

18. Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector $3 \hat{i}+5 \hat{j}-6 \hat{k}$
Ans: $3 \hat{i}+5 \hat{j}-6 \hat{k}$

$$
\begin{gathered}
|(\vec{n})|=\sqrt{70} \\
\hat{n}=\frac{\vec{n}}{|\vec{n}|} \\
=\frac{3}{\sqrt{70}} \hat{i}+\frac{5}{\sqrt{70}} \hat{j}-\frac{6}{\sqrt{70}} \hat{k}
\end{gathered}
$$

$\vec{r} \cdot \hat{n}=7$

$$
\vec{r} \cdot\left(\frac{3}{\sqrt{70}} \hat{i}+\frac{5}{\sqrt{70}} \hat{j}-\frac{6}{\sqrt{70}} \hat{k}\right)=7
$$

19. Find the Cartesian equation of plane

$$
\vec{r} \cdot(\hat{i}+\hat{j}-\hat{k})=2
$$

Ans:

$$
\vec{r} \cdot(\hat{i}+\hat{j}-\hat{k})=2
$$

$$
\text { letr } \vec{r}=x \hat{i}+y \hat{j}+z \hat{k}
$$

$$
(x \hat{i}+y \hat{i}+z \hat{k}) \cdot(\hat{i}+\hat{j}-\hat{k})=2
$$

$x+y-z=2$
20. Find the angle between the line

$$
\frac{x+1}{2}=\frac{y}{3}=\frac{z-3}{6}
$$

and the plane $10 x+2 y-11 z=3$
Ans:

$$
\begin{gathered}
\vec{r}=(-\hat{i}+0 . \hat{j}+3 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k}) \\
\text { and } \vec{r} \cdot(10 \hat{i}+2 \hat{j}-11 \hat{k})=3 \\
\text { here } \vec{b}=2 \hat{i}+3 \hat{j}+6 \hat{k} \\
\text { and } \vec{n}=10 \hat{i}+2 \hat{j}-11 \hat{k}
\end{gathered}
$$

$$
\begin{gathered}
\sin \phi=\left|\frac{\vec{b} \cdot \vec{n}}{|\vec{b}||\vec{n}|}\right| \\
=\left|\frac{20+6-66}{7 \times 15}\right|=\left|\frac{-40}{7 \times 15}\right|=\frac{8}{21}
\end{gathered}
$$

21. Find the value of P so that the lines

$$
\frac{1-x}{3}=\frac{7 y-14}{2 p}=\frac{z-3}{2} \text { and } \frac{7-7 x}{3 p}=\frac{y-5}{1}=\frac{6-z}{5}
$$

are at right angles.
Ans:

$$
\frac{x-1}{-3}=\frac{y-2}{\frac{2 p}{7}}=\frac{z-3}{3} .
$$

$$
\begin{equation*}
\frac{-(x-1)}{\frac{-3 p}{7}}=\frac{y-5}{1}=\frac{z-6}{-5} \ldots \tag{ii}
\end{equation*}
$$

$$
a_{1}=-3, b_{1}=\frac{2 p}{7}, c_{1}=2
$$

$$
a_{2}=\frac{-3 p}{7}, b_{2}=1, c_{2}=-5
$$

$$
\text { for } \perp
$$

$$
\begin{aligned}
& a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0 \\
& -3\left(\frac{-3 p}{7}\right)+\frac{2 p}{7}(1)+2(-5)=0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{9 p}{7}+\frac{2 p}{7}-\frac{10}{1}=0 \\
& \frac{9 p+2 p-70}{7}=0
\end{aligned}
$$

$$
\begin{aligned}
& 11 p=70 \\
& p=\frac{70}{11}
\end{aligned}
$$

22. Find the shortest distance between the lines whose vector equation are

$$
\begin{aligned}
& \vec{r}=(1-t) \hat{i}+(t-2) \hat{j}+(3-2 t) \hat{k} \\
& \vec{r}=(s+1) \hat{i}+(2 s-1) \hat{j}-(2 s+1) \hat{k}
\end{aligned}
$$

Ans:

$$
\begin{aligned}
& \vec{r}=\hat{i}-2 \hat{j}+3 \hat{k}+t(\hat{i}+\hat{j}-2 \hat{k}) \\
& \vec{r}=\hat{i}-\hat{j}-\hat{k}+s(\hat{i}+2 \hat{j}-2 \hat{k})
\end{aligned}
$$

$$
\begin{aligned}
& \vec{a}_{1}=\hat{i}-2 \hat{j}+3 \hat{k} \\
& \vec{b}_{1}=\hat{i}+\hat{j}-2 \hat{k} \\
& \vec{a}_{2}=\hat{i}-\hat{j}-\hat{k} \\
& \hat{b}_{2}=\hat{i}+2 \hat{j}-2 \hat{k}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{a}_{2}-\vec{a}_{1}=\hat{j}-4 \hat{k} \\
& \vec{b}_{1} \times \vec{b}_{2}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
-1 & 1 & -2 \\
1 & 2 & -2
\end{array}\right|
\end{aligned}
$$

$$
=2 \hat{i}-4 \hat{j}-3 \hat{k}
$$

$$
\begin{aligned}
& \left|\vec{b}_{1} \times \vec{b}_{2}\right|=\sqrt{(2)^{2}+(-4)^{2}+(-3)^{2}} \\
& =\sqrt{29} \\
& d=\left|\frac{\left(\vec{a}_{2}-\vec{a}_{1}\right)\left(\vec{b}_{1} \times \vec{b}_{2}\right)}{\left|\vec{b} \hat{1} \times \vec{b}_{2}\right|}\right|=\frac{8}{\sqrt{29}}
\end{aligned}
$$

23. Find x such that four points $A(3,2,1) B(4, x, 5)(4,2,-2)$ and $D(6,5,-1)$ are coplanar. Ans: The equation of plane through
$A(3,2,1), C(4,2,-2)$ and $D(6,5,-1)$ is

$$
\left|\begin{array}{ccc}
x-x_{1} & y-y_{1} & z-z_{1} \\
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
x_{3}-x_{1} & y_{3}-y_{1} & z_{3}-z_{1}
\end{array}\right|=0
$$

$$
\left|\begin{array}{ccc}
x-3 & y-2 & z-1 \\
4-3 & 2-2 & -2-1 \\
6-3 & 5-2 & -1-1
\end{array}\right|=0
$$

$$
9 x-7 y+3 z-16=0 \ldots(i)
$$

The point A, B, C, D are coplanar

$$
9 \times 4-7 x+3 \times 5-16=0
$$

$x=5$
24. Find the angle between the two planes $2 x+y-2 z=5$ and $3 x-6 y-2 z=7 u s i n g$ vector method.
Ans.

$$
\begin{gathered}
\vec{N}_{1}=2 \hat{i}+\hat{j}-2 \hat{k} \\
\vec{N}_{2}=3 \hat{i}-6 \hat{j}-2 \hat{k} \\
\cos \theta=\left|\frac{\vec{N}_{1} \cdot \vec{N}_{2}}{\left|\vec{N}_{1}\right|\left|\vec{N}_{2}\right|}\right| \\
=\left\lvert\, \frac{(2 \hat{i}+\hat{j}-2 \hat{k}) \cdot(3 \hat{i}-6 \hat{j}-2 \hat{k}}{\sqrt{4+1+4}} \sqrt{9+36+4}\right.
\end{gathered}
$$

$$
\frac{4}{21}
$$

$$
\theta=\cos ^{-1}\left(\frac{4}{21}\right)
$$

25. Find the angle b/w the line

$$
\frac{x-2}{2}=\frac{y-1}{5}=\frac{z+3}{-3} \text { and } \frac{x+2}{-1}=\frac{y-4}{8}=\frac{z-5}{4}
$$

Ans:

$$
\vec{b}_{1}=2 \hat{i}+5 \hat{j}-3 \vec{k}
$$

$$
\vec{b}_{2}=-\hat{i}+8 \hat{j}+4 \hat{k}
$$

$$
=\frac{26}{9 \sqrt{38}}
$$

$$
\begin{gathered}
\cos \theta=\left|\frac{\vec{b}_{1} \cdot \vec{b}_{2}}{\left|\vec{b}_{1}\right|\left|\vec{b}_{2}\right|}\right| \\
=\left|\frac{2(-1)+5(8)+(-3)(4)}{\sqrt{38} \sqrt{81}}\right| \\
\theta=\cos ^{-1}\left(\frac{26}{9 \sqrt{38}}\right)
\end{gathered}
$$

6 Marks Questions

1.Find the vector equation of the plane passing through the intersection of plane

$$
\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=6 \text { and } \vec{r} \cdot(2 \hat{i}+3 \hat{j}+4 \hat{k})=-5
$$

And the point (1,1,1)
Ans.

$$
\begin{aligned}
& \overrightarrow{n_{1}}=\hat{i}+\hat{j}+\hat{k}, \vec{n}_{2}=2 \hat{i}+3 \hat{j}+4 \hat{k} \\
& \vec{d}_{1}=-5, d_{2}=6
\end{aligned}
$$

Using the relation

$$
\begin{gather*}
\vec{r} \cdot\left(n_{1}+\lambda n_{2}\right)=d_{1}+\lambda d_{2} \\
r \cdot[(1+2 \lambda) \hat{i}+(1+3 \lambda) \hat{j}+(1+4 \lambda) \hat{k}]=6-5 \lambda . . \tag{1}
\end{gather*}
$$

$$
\text { taking } \quad \vec{r}=x \hat{i}+y \hat{j}+z \hat{k}
$$

$$
(x \hat{i}+y \hat{j}+z \hat{k})[(1+2 \lambda) \hat{i}+(1+3 \lambda) \hat{j}+(1+4 \lambda) \hat{k}]=6-5 \lambda
$$

$$
(1+2 \lambda) x+(1+3 \lambda) y+(1+4 \lambda) z=6-5 \lambda
$$

$$
(x+y+z-6)+\lambda(2 x+3 y+4 y+4 z+5)=0 \ldots(2)
$$

$$
\text { plane passes through the point }(1,1,1)
$$

$$
\begin{gathered}
\lambda=\frac{3}{14} \\
\text { put } \lambda \text { in eq (1) } \\
\bar{r} \cdot\left[\left(1+\frac{3}{7}\right) \hat{i}+\left(1+\frac{9}{14}\right) \hat{j}+\left(1+\frac{6}{7}\right) \hat{k}\right]=6-\frac{15}{14}
\end{gathered}
$$

$$
\vec{r} \cdot\left(\frac{10}{7} \hat{i}+\frac{23}{14} \hat{j}+\frac{13}{7} \hat{k}\right)=\frac{69}{14}
$$

$$
\vec{r} \cdot(20 \hat{i}+23 \hat{j}+26 \hat{k})=69
$$

2. Find the coordinate where the line thorough $(3,-4,-5)$ and $((2,-3,1)$ crosses the plane $2 x+y+z=7$
Ans. Given points are A(3,-4,-5)
B(2,-3,1)
Direction ration of $A B$ are 3-2, $-4+3,-5-1$
1,-1,-6
Eq. of line $A B$

$$
\frac{x-3}{1}=\frac{y+4}{-1}=\frac{Z+5}{-6}=\lambda(s a y)
$$

$$
x=\lambda+3, y=-\lambda-4, Z=-6 \lambda-5
$$

let

$$
\begin{gathered}
(\lambda+3,-\lambda-4,-6 \lambda-5) \text { lies in } \\
\text { the plane } 2 x+y+Z=7
\end{gathered}
$$

$$
2(\lambda+3)+(-\lambda-4)+(-6 \lambda-5)=7
$$

$\lambda=-2$
$(1,-2,7)$ are the required point
3. Find the equation of the plane through the intersection of the planes $3 x-y+2 z-4=0$ and $x+y+z-2=0$ and the point $(2,2,1)$
Ans. Equation of any plane through the intersection of given planes can be taken as

$$
(3 x-y+2 z-4)+\lambda(x+y+z-2)=0 \ldots . .(i)
$$

The point $(2,2,1)$ lies in this plane $\lambda=-2 / 3$ put in eq(i)

$$
\begin{gathered}
(3 x-y+2 z-4)-\frac{2}{3}(x+y+z-2)=0 \\
7 x-5 y+4 z-8=0
\end{gathered}
$$

4. If the points $(1,1 p)$ and ($-3,0,1$)be equidistant from the plane

$$
\vec{r} \cdot(3 \hat{i}+4 \hat{j}-12 \hat{k})+13=0
$$

, then find the value of \mathbf{p}.
Ans. The given plane is

$$
\begin{gather*}
\vec{r} \cdot(3 \hat{i}+4 \hat{j}-12 \hat{k})+13=0 \\
(x \hat{i}+y \hat{j}+z \hat{k}) \cdot(3 \hat{i}+4 \hat{j}-12 \hat{k})+13=0 \\
3 x+4 y-12 z+13=0 \ldots .(i) \tag{i}
\end{gather*}
$$

This plane is equidistant from the points $(1,1, P)$ and $(-3,0,1)$

$$
\begin{gathered}
\frac{|3(1)+4(1)-12 p+13|}{\sqrt{3^{2}+4^{2}+(-12)^{2}}} \\
=\frac{|3(-3)+4(0)-12(1)+13|}{\sqrt{3^{2}+4^{2}+(-12)^{2}}} \\
|20-12 p|=|-8|
\end{gathered}
$$

$20-12 p= \pm 8$
$p=-1$ or $\frac{7}{3}$
5. Find the equation of the plane through the line of intersection of the planes $x+y+z=1$ and $2 x+3 y+4 z=5$ which is \perp of the plane $x-y+z=0$
Ans. Equations of any plane through the intersection of given planes are be written is

$$
(x+y+z-1)+\lambda(2 x+3 y+4 z-5)=0
$$

$$
\begin{equation*}
(1+2 \lambda) x+(1+3 \lambda) y+(1+4 \lambda) z-1-5 \lambda=0 . \tag{1}
\end{equation*}
$$

This plane is it right angle to the plane $x-y+z$

$$
\begin{aligned}
& (1+2 \lambda)(1)+(1+3 \lambda)(-1)+(1+4 \lambda)(1)=0 \\
& \lambda=-1 / 3
\end{aligned}
$$

puthin equation (1)

$$
\left(1-\frac{2}{3}\right) x+\left(1-\frac{3}{3}\right) y+\left(1-\frac{4}{3}\right) Z-1+\frac{5}{3}=0
$$

$x-z+2=0$
6. Find the distance of the point $(-1,-5,-10)$ from the point of intersection of the line

$$
\vec{r}=(2 \hat{i}-\hat{j}+2 \hat{k})+\lambda(3 \hat{i}+4 \hat{j}+2 \hat{k})
$$

and the plane

$$
\vec{r} \cdot(\hat{i}-\hat{j}+\hat{k})=5
$$

Ans.

$$
\begin{align*}
& r=(2 i-j+2 k)+\lambda(3 i+4 j+2 k) \\
& \frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{2}=\lambda \ldots \ldots .(i) \tag{i}
\end{align*}
$$

coordinets are

$$
3 \lambda+2,4 \lambda-1,2 \lambda+2
$$

$$
\begin{aligned}
& \text { and } \vec{r} \cdot(\hat{i}-\hat{j}+\hat{k})=5 \\
& (x \hat{i}+y \hat{j}+z \hat{k}) \cdot(\hat{i}-\hat{j}+\hat{k})=5
\end{aligned}
$$

$$
\begin{equation*}
x-y+z=5 . \tag{ii}
\end{equation*}
$$

coordinatelies in eq. (ii)
$\lambda=0$

$$
\text { we } \operatorname{get}(2,-1,2)
$$

Are the coordinate of the point of intersection of the given line and the plane

$$
(-1,-5,-10) \text { and }(2,-1,2)
$$

req. distance $=\sqrt{(2+1)^{2}+(-1+5)^{2}+(2+10)^{2}}$
$=13$
7. Find the equation of the plane that contains the point $(1,-1,2)$ and is \perp to each of the plane $2 x+3 y-2 z=5$ and $x+2 y-3 z=8$
Ans. The equation of the plane containing the given point is $\mathrm{A}(\mathrm{x}-1)+\mathrm{B}(\mathrm{y}-2)+\mathrm{C}(\mathrm{Z}-3)=0 \ldots$.

$$
\Rightarrow A x+B y+C z=A+2 B+3 C
$$

Condition of \perp to the plane given in (i) with the plane
$2 x+3 y-2 z=5, x+2 y-3 z=8$
$2 A+3 B-2 C=0$
$A+2 B-3 C=0$
On solving
$A=-5 c, B=4 C$
$5 x-4 y-Z=7$
8. Find the vector equation of the line passing through $(1,2,3)$ and || to the planes

$$
\vec{r} \cdot(\hat{i}-\hat{j}+2 \hat{k})=5 \text { and } \vec{r} \cdot(3 \hat{i}+\hat{i}+\hat{k})=6
$$

Ans.

$$
\text { line pas } \sin \text { g through }(1,2,3)
$$

i.e $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}$
and \|| to the planes

$$
\begin{aligned}
& \vec{b}_{1}=\hat{i}-\hat{j}+2 \hat{k} \\
& \vec{b}_{2}=3 \hat{i}+\hat{j}+\hat{k}
\end{aligned}
$$

\therefore Theline is normal to the vector

$$
\begin{gathered}
\vec{b}_{1} \times \vec{b}_{2}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & -1 & 2 \\
3 & 1 & 1
\end{array}\right| \\
=-3 \hat{i}+5 \hat{j}+4 \hat{k}
\end{gathered}
$$

\therefore Thereq.eq.of the line is

$$
\vec{r}=\hat{i}+2 \hat{i}+3 \hat{k}+\lambda(-3 \hat{i}+5 \hat{j}+4 \hat{k})
$$

9. Find the equation of the s point where the line through the points $A(3,4,1)$ and $B(5,1,6)$ crosses the $X Y$ plane.
Ans. The vector equation of the line through the point A and B is

$$
\begin{align*}
& \vec{r}=3 \hat{i}+4 \hat{j}+k+\lambda[(5-3) \hat{i}+(1-4) \hat{j}+(6-1) \hat{k}] \\
& \vec{r}=3 \hat{i}+4 \hat{j}+\hat{k}+\lambda(2 \hat{i}-3 \hat{j}+5 \hat{k}) \ldots(i) \tag{i}
\end{align*}
$$

Let P be the point where the line $A B$ crosses the $X Y$ plane. Then the position vector \vec{r} of the point P is the form
$x \hat{i}+y \hat{j}$

$$
\begin{gathered}
x \hat{i}+y \hat{i}=(3+2 \lambda) \hat{i}+(4-3 \lambda) \hat{j}+(1+5 \lambda) \hat{k} \\
x=3+2 \lambda \mid y=4-3 \lambda \\
x=13 / 5, y=23 / 5
\end{gathered}
$$

req. point is $\left(\frac{13}{5}, \frac{23}{5}, 0\right)$
10. Prove that if a plane has the intercepts a, b, c is at a distance of p units from the origin then

$$
\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{p^{2}}
$$

Ans. The equation of the plane in the intercepts from is $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ distance of this plane from the origin is given to be p

$$
p=\frac{\left|\frac{1}{a} \cdot 0+\frac{1}{b} \cdot 0+\frac{1}{c} \cdot 0-1\right|}{\sqrt{\left(\frac{1}{a}\right)^{2}+\left(\frac{1}{b}\right)^{2}+\left(\frac{1}{c}\right)^{2}}}
$$

$$
\begin{aligned}
& p=\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}} \\
& \Rightarrow \frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}
\end{aligned}
$$

