Important Questions Class 12 Maths Chapter 2 Inverse Trigonometric Functions

1 Mark Questions

1. Find the principal value of $\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)$

Ans. Let $\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)=\theta$
$\sin \theta=\frac{1}{\sqrt{2}}$
We know that $\theta \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
$\sin \theta=\sin \frac{\pi}{4}$
$\theta=\frac{\pi}{4}$
There for P.V. of

$$
\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right) \text { is } \frac{\pi}{4}
$$

2. Find the value of $\sin ^{-1}\left(\sin \frac{3 \pi}{5}\right)$

Ans.

$$
\sin ^{-1}\left(\sin \frac{3 \pi}{5}\right)=?
$$

$$
\sin ^{-1}\left(\sin \frac{3 \pi}{5}\right)=\sin ^{-1}\left[\sin \left(\pi-\frac{3 \pi}{5}\right)\right]\left[\because \sin ^{-1}(\sin \theta)\right]=\theta
$$

When $\theta \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
$=\frac{2 \pi}{5}$
3. Find the value of

$$
\tan ^{-1} \sqrt{3}-\cot t^{-1}(-\sqrt{3})
$$

Ans.

$$
\begin{aligned}
& \tan ^{-1} \sqrt{3}-\cot ^{-1}(-\sqrt{3})=? \\
& \\
& \tan ^{-1} \sqrt{3}-\cot ^{-1}(-\sqrt{3}) \\
& = \\
& =\tan ^{-1} \sqrt{3}-\left(\pi-\cot ^{-1} \sqrt{3}\right)\left[\because \cot ^{-1}(-x)=\pi-\cot ^{-1} x\right] \\
& =\tan ^{-1} \sqrt{3}-\pi+\cot ^{-1} \sqrt{3} \\
& = \\
& =\frac{\left.\tan ^{-1} \sqrt{3}+\cot ^{-1} \sqrt{3}\right)-\pi\left[\because \tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}\right]}{} \begin{array}{l}
=\frac{\pi}{2}-\frac{\pi}{1}=\frac{-\pi}{2}
\end{array}
\end{aligned}
$$

4. Find the value of sin

$$
\left(\sin ^{-1} a+\cos ^{-1} a\right)
$$

Ans.

$$
\begin{gathered}
\sin \left(\sin ^{-1} a+\cos ^{-1} a\right) \\
\sin \frac{\pi}{2}\left[\because \sin ^{-1} a+\cos ^{-1} a=\frac{\pi}{2}\right]
\end{gathered}
$$

$$
=1
$$

5. $\tan ^{-1}$

$$
\left(\frac{x}{y}\right)-\tan ^{-1}\left(\frac{x-y}{x+y}\right)
$$

evaluate

Ans.

$$
\tan ^{-1}\left(\frac{x}{y}\right)-\tan ^{-1}\left(\frac{\frac{x}{y}-1}{\frac{x}{y}+1}\right)
$$

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{x}{y}\right)-\tan ^{-1}\left(\frac{\frac{x}{y}-1}{1+\frac{x}{y}}\right)\left[\because \tan ^{-1} x-\tan ^{-1} y=\tan ^{-1}\left(\frac{x-y}{1+x y}\right)\right] \\
& \tan -^{1}\left(\frac{x}{y}\right)-\left[\tan ^{-1}\left(\frac{x}{y}\right)-\tan ^{-1}(1)\right] \\
& \tan ^{-1}\left(\frac{x}{y}\right)-\tan ^{-1}\left(\frac{x}{y}\right)+\tan ^{-1}(1) \\
& \tan ^{-1}\left(\tan \frac{\pi}{4}\right)
\end{aligned}
$$

$=\frac{\pi}{4}$
6. Find the principal value of $\cot ^{-1}\left(-\frac{1}{\sqrt{3}}\right)$.
Ans. Let

$$
\cot ^{-1}\left(\frac{-1}{\sqrt{3}}\right)=\theta
$$

$$
\cot \theta=\frac{-1}{\sqrt{3}}
$$

We know that $\theta \in(0, \pi)$
$\cot \theta=\cot \left(\pi-\frac{\pi}{3}\right)$
$\theta=\frac{2 \pi}{3}$
There four p.v of $\cot ^{-1}\left(\frac{-1}{\sqrt{3}}\right)=\frac{2 \pi}{3}$

