Important Questions Class 12 Maths Chapter 3 Matrices

1 Mark Questions

1. If a matrix has 8 elements, what are the possible orders it can have.

Ans.

$$
1 \times 8, \quad 8 \times 1, \quad 4 \times 2, \quad 2 \times 4,
$$

2. Identity matrix of orders \mathbf{n} is denoted by. Ans. I_{n}
3. Define square matrix

Ans. A matrix in which the no. of rows are equal to no. of columns i.e. $m=n$
4. The no. of all possible metrics of order 3×3 with each entry 0 or 1 is Ans. 512 $=2^{9}$
5.

$$
A=\left[\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}\right]
$$

Write (1) a_{33}, a_{12} (ii) what is its order
Ans. (i) $a_{33}=9, a_{12}=4$
(ii) 3×3
6. Two matrices $\mathbf{A}=a i j$ and $\mathbf{B}=b i j$ are said to be equal if Ans. They are of the same order.
7. Define Diagonal matrix

Ans. A square matrix in which every non - diagonal element is zero is called diagonal matrix.
8. Every diagonal element of a skew symmetric matrix is Ans. Zero.
9. If

$$
A=\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right] \text {, then } \mathrm{A}+A^{\prime}=I
$$

Find α
Ans.

$$
\begin{gathered}
A+A^{\prime}=\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right]+\left[\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right] \\
=\left[\begin{array}{cc}
2 \cos \alpha & 0 \\
0 & 2 \cos \alpha
\end{array}\right] \\
A+A^{\prime}=I(\text { Given }) \\
{\left[\begin{array}{cc}
2 \cos \alpha & 0 \\
0 & 2 \cos \alpha
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]} \\
2 \cos \alpha=1 \\
\cos \alpha=\frac{1}{2}
\end{gathered}
$$

$$
\begin{aligned}
& \cos \alpha=\cos \frac{\pi}{3} \\
& \alpha=\frac{\pi}{3}
\end{aligned}
$$

10.

$$
A=\left[\begin{array}{ll}
1 & 5 \\
6 & 7
\end{array}\right] \text { Find } A+A^{\prime}
$$

Ans.

$$
\begin{aligned}
& A+A^{\prime}=\left[\begin{array}{ll}
1 & 5 \\
6 & 7
\end{array}\right]+\left[\begin{array}{ll}
1 & 6 \\
5 & 7
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 & 11 \\
11 & 14
\end{array}\right]
\end{aligned}
$$

11. If $A=\left[\begin{array}{cc}\alpha & \beta \\ \gamma & -\alpha\end{array}\right]$ and $\mathbf{A}^{2}=\mathbf{l}$.

Find relation given by $\mathrm{a}^{2}=l$.
Ans.

$$
\begin{aligned}
& A^{2}=\left[\begin{array}{cc}
\alpha & \beta \\
\gamma & -\alpha
\end{array}\right]\left[\begin{array}{cc}
\alpha & \beta \\
\gamma & -\alpha
\end{array}\right] \\
& =\left[\begin{array}{cc}
\alpha^{2}+\beta \gamma & 2 \beta-\alpha \beta \\
\alpha \gamma-\alpha \gamma & \beta \gamma+\alpha^{2}
\end{array}\right]
\end{aligned}
$$

ATQ.

$$
\left[\begin{array}{ll}
\alpha^{2}+\beta \gamma & \alpha \\
\alpha \gamma-\alpha \gamma & \beta \gamma+\alpha^{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$\alpha^{2}+\beta \gamma=1$
$\alpha^{2}+\beta \gamma-1=0$
12. If the matrix A is both symmetric and skews symmetric, then A will be.

Ans. $A^{1}=A$
$A^{1}=-A$
$\Rightarrow A=-A$
$2 \mathrm{~A}=0$
$\mathrm{A}=0$
13. Matrices A and B will be inverse of each other only if

Ans. $\mathrm{AB}=\mathrm{BA}=1$
14. If A, B are symmetric matrices of same order, them $A B-B A$ is a Ans. $P=A B-B A$

$$
\begin{aligned}
& P^{\prime}=(A B-B A)^{\prime} \\
& P^{\prime}=(A B)^{\prime}-(B A)^{\prime}
\end{aligned}
$$

$$
=B^{\prime} A^{\prime}-A^{\prime} B^{\prime}=\left[\begin{array}{l}
\because A^{\prime}=A \\
B^{\prime}=B
\end{array}\right]
$$

$$
=B A-A B
$$

$=-(A B-B A)$
$=-P$
15. Diagonal of skew symmetric matrix are

Ans. Zero
16. If A and B are symmetric matrices of the same order, prove that $A B+B A$ is symmetric
Ans. Let $P=A B+B A$

$$
\begin{gathered}
P^{\prime}=(A B+B A)^{\prime} \\
=(A B)^{\prime}+(B A)^{\prime} \\
=B^{\prime} A^{\prime}+A^{\prime} B \\
=B A+A B\left[A^{\prime}=A, B^{\prime}=B\right]
\end{gathered}
$$

$$
=A B+B A
$$

$$
=P
$$

17. If $A=\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]$,

Prove that $A-A^{t}$ is a skew - symmetric matrix
Ans. $P=A-A^{t}$

$$
=\left[\begin{array}{ll}
2 & 3 \\
4 & 5
\end{array}\right]+\left[\begin{array}{ll}
-2 & -4 \\
-3 & -5
\end{array}\right]
$$

$$
\begin{aligned}
& =\left[\begin{array}{ll}
0 & -1 \\
1 & 0
\end{array}\right] \\
& P^{\prime}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& P^{\prime}=-\left[\begin{array}{ll}
0 & -1 \\
1 & 0
\end{array}\right] \\
& P^{\prime}=-P
\end{aligned}
$$

Prove
18. If A is any square matrix, prove that A^{1} is symmetric Ans. Let $P=A A^{\prime}$

$$
\begin{aligned}
& P^{\prime}=(A A)^{\prime} \\
& =\left[(A)^{\prime} A^{\prime}\right] \\
& =A A^{\prime} \\
& =P \operatorname{Pr} \text { ove }
\end{aligned}
$$

19. Solve for x given that

$$
\left[\begin{array}{cc}
2 & -3 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
4
\end{array}\right]=\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

Ans. $\left[\begin{array}{l}2 x-3 y \\ x+y\end{array}\right]=\left[\begin{array}{l}1 \\ 3\end{array}\right]$
$2 x-3 y=1$
$x+y=3$
$x=3-y$
$2(3-y)-3 y=1$
$-5 y=-5$
$y=1$
$x=3-1$
$x=2$
20. Give example of matrices such that $A B=0, B A=0, A \neq 0, B \neq 0$ Ans.

$$
\begin{gathered}
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], B=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \\
A B=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right], B A=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
\end{gathered}
$$

21. Show that

$$
A=\left[\begin{array}{ccc}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0
\end{array}\right]
$$

, is skew symmetric matrix.
Ans. $\left[\begin{array}{ll}x & y \\ 3 y & x\end{array}\right]=\left[\begin{array}{l}3 \\ 5\end{array}\right]$

$$
A^{\prime}=\left[\begin{array}{ccc}
0 & -1 & 1 \\
1 & 0 & -1 \\
-1 & 1 & 0
\end{array}\right]
$$

$$
A^{\prime}=-\left[\begin{array}{lrr}
0 & -1 & 1 \\
-1 & 0 & 1 \\
1 & -1 & 0
\end{array}\right]
$$

$A^{\prime}=-A$ Prove
22. $A=\left[\begin{array}{ll}2 & 4 \\ 5 & 6\end{array}\right]$, Prove that $A+A^{\prime}$
is a symmetric matrix
Ans.

$$
P=A+A^{\prime}=\left[\begin{array}{ll}
2 & 4 \\
5 & 6
\end{array}\right]+\left[\begin{array}{ll}
2 & 5 \\
4 & 6
\end{array}\right]
$$

$P=\left[\begin{array}{ll}4 & 9 \\ 9 & 12\end{array}\right]$
$P^{\prime}=\left[\begin{array}{ll}4 & 9 \\ 9 & 12\end{array}\right]$
$P^{\prime}=P$ prove
23. If $A=\left[\begin{array}{ll}-1 & 5 \\ 3 & 2\end{array}\right]$ show that $(3 A)^{\prime}=3 A^{\prime}$

Ans. $3 A=\left[\begin{array}{cc}-3 & 15 \\ 9 & 6\end{array}\right]$

$$
(3 A)^{\prime}=\left[\begin{array}{cc}
-3 & 9 \\
15 & 6
\end{array}\right]
$$

$$
3 A^{\prime}=3\left[\begin{array}{cc}
-1 & 3 \\
5 & 2
\end{array}\right]
$$

$=\left[\begin{array}{cc}-3 & 9 \\ 15 & 6\end{array}\right]$
Prove
24. Solve for x and y, given that

$$
\left[\begin{array}{ll}
x & \mathrm{y} \\
3 \mathrm{y} & \mathrm{x}
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
3 \\
5
\end{array}\right]
$$

Ans. $\left[\begin{array}{ll}x & y \\ 3 y & x\end{array}\right]=\left[\begin{array}{l}3 \\ 5\end{array}\right]$
$x+2 y=3$
$3 y+2 x=5$
$\Rightarrow 2 x+4 y=6$
$2 x+3 y=5$
$y=1$
$x+2(1)=3$
$x=1$
25. Given an example of matrix A and B such that $A B=0$ but $A \neq 0, B \neq 0$ Ans. $\alpha-\beta$

$$
A=\left[\begin{array}{cc}
0 & -1 \\
0 & 2
\end{array}\right], B=3\left[\begin{array}{ll}
3 & 5 \\
0 & 0
\end{array}\right]
$$

$A B=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$

4 Marks Questions

1. Find x and y if $x+y=\left[\begin{array}{ll}5 & 2 \\ 0 & 9\end{array}\right]$ and $x-y=\left[\begin{array}{rr}3 & 6 \\ 0 & -1\end{array}\right]$

Ans.

$$
x+y+x-y=\left[\begin{array}{ll}
5 & 2 \\
0 & 9
\end{array}\right]+\left[\begin{array}{rr}
3 & 6 \\
0 & -1
\end{array}\right]
$$

$2 x=\left[\begin{array}{ll}8 & 8 \\ 0 & 8\end{array}\right]$
$x=\left[\begin{array}{ll}4 & 4 \\ 0 & 4\end{array}\right]$

$$
\begin{gathered}
(x+y)-(x-y)=\left[\begin{array}{ll}
5 & 2 \\
0 & 9
\end{array}\right]-\left[\begin{array}{cc}
3 & 6 \\
0 & -1
\end{array}\right] \\
x+y-x+y=\left[\begin{array}{ll}
2 & -4 \\
0 & 10
\end{array}\right]
\end{gathered}
$$

$$
y=\left[\begin{array}{rr}
1 & -2 \\
0 & 5
\end{array}\right]
$$

2.

$$
f(x)=\left[\begin{array}{lll}
\cos x & -\sin x & 0 \\
\sin x & \cos x & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Show that $f(x) . f(y)=f(x+y)$
Ans. L.H.S $=f(x) . f(y)$

$$
=\left[\begin{array}{ccc}
\cos x & -\sin x & 0 \\
\sin x & \cos x & 0 \\
0 & 0 & 1
\end{array}\right]-\left[\begin{array}{ccc}
\cos y & -\sin y & 0 \\
\sin y & \cos y & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\left.\begin{array}{c}
=\left[\begin{array}{cccc}
\cos x \cos y-\sin x \cdot \sin y+0 & -\sin y \cos x & -\sin x \\
\sin x \cos y & +0 & 0+0+0 \\
\cos y+\cos x \cdot \sin y+0 & -\sin x \cdot \sin y+\cos x \cdot \cos y+0 & 0+0+0 \\
0+0 & 0 & +0 & +0
\end{array} 0+0+1\right.
\end{array}\right]
$$

3. If $A=\left[\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right] \quad I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Find K.So that $A^{2}=K A-21$
Ans. $\mathrm{A}^{2}=\mathrm{A} . \mathrm{A}$

$$
\begin{aligned}
& =\left[\begin{array}{ll}
3 & -2 \\
4 & -2
\end{array}\right]\left[\begin{array}{ll}
3 & -2 \\
4 & -2
\end{array}\right] \\
& =\left[\begin{array}{ll}
9-8 & -6+4 \\
12-8 & -8+4
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{ll}
1 & -2 \\
4 & -4
\end{array}\right] \\
& A^{2}=K A-2 I
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & -2 \\
4 & -4
\end{array}\right]=K\left[\begin{array}{ll}
3 & -2 \\
4 & -2
\end{array}\right]-2\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{ll}
1 & -2 \\
4 & -4
\end{array}\right]=\left[\begin{array}{ll}
3 K & -2 K \\
4 K & -2 K
\end{array}\right]=\left[\begin{array}{cc}
2 & 0 \\
0 & 2
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
3 & -2 \\
4 & -4
\end{array}\right]=\left[\begin{array}{ll}
3 K & -2 K \\
4 K & -2 K
\end{array}\right]} \\
& K=1
\end{aligned}
$$

4.

$$
A=\left[\begin{array}{r}
-2 \\
4 \\
5
\end{array}\right] B=\left[\begin{array}{lll}
1 & 3 & -6
\end{array}\right]
$$

Prove $(A B)^{\prime}=B^{\prime} A^{\prime}$ Ans.

$$
\begin{gathered}
A B=\left[\begin{array}{ccc}
-2 & -6 & 12 \\
4 & 12 & -24 \\
5 & 15 & -30
\end{array}\right] \\
A^{\prime}=\left[\begin{array}{lll}
-2 & 4 & 5
\end{array}\right]
\end{gathered}
$$

$$
B^{\prime}=\left[\begin{array}{c}
1 \\
3 \\
-6
\end{array}\right]
$$

$$
\begin{aligned}
& B^{\prime} A^{\prime}=\left[\begin{array}{c}
1 \\
3 \\
-6
\end{array}\right]\left[\begin{array}{lll}
-2 & 4 & 5
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-2 & 4 & 5 \\
-6 & 12 & 15 \\
12 & -24 & -30
\end{array}\right] \\
& A B^{\prime}=\left[\begin{array}{ccc}
-2 & 4 & 5 \\
-6 & 12 & 15 \\
12 & -24 & -30
\end{array}\right] \\
& A B^{\prime}=B^{\prime} A^{\prime}
\end{aligned}
$$

5.

$$
A=\left[\begin{array}{cc}
0 & -\tan \frac{\alpha}{2} \\
\tan \frac{\alpha}{2} & 0
\end{array}\right]=
$$

Prove $I+A=(I-A)\left[\begin{array}{ll}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$

Ans. Put $\tan \frac{\alpha}{2}=t$

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
0 & -\mathrm{t} \\
\mathrm{t} & 0
\end{array}\right] \\
& I+A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\left[\begin{array}{ll}
0 & -\mathrm{t} \\
\mathrm{t} & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & -\mathrm{t} \\
\mathrm{t} & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& I-A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{cc}
0 & -\mathrm{t} \\
\mathrm{t} & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\left[\begin{array}{cc}
0 & \mathrm{t} \\
-\mathrm{t} & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & t \\
-t & 1
\end{array}\right] \\
& \text { L.H.S }=(I-A)\left[\begin{array}{ll}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right] \\
& =(I-A)\left[\begin{array}{ll}
\frac{1-\tan ^{2} \frac{\alpha}{2}}{1+\tan ^{2} \frac{\alpha}{2}} & \frac{-2 \tan ^{2} \frac{\alpha}{2}}{1+\tan ^{2} \frac{\alpha}{2}} \\
\frac{2 \tan ^{2} \frac{\alpha}{2}}{1+\tan ^{2} \frac{\alpha}{2}} & \frac{1-\tan ^{2} \frac{\alpha}{2}}{1+\tan ^{2} \frac{\alpha}{2}}
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & \mathrm{t} \\
-\mathrm{t} & 1
\end{array}\right]\left[\begin{array}{cc}
\frac{1-t^{2}}{1+t^{2}} & \frac{-2 t}{1+t^{2}} \\
\frac{-2 t}{1+t^{2}} & \frac{1-t^{2}}{1+t^{2}}
\end{array}\right] \\
& =\left[\begin{array}{ll}
\frac{1-t^{2}}{1+t^{2}}+\frac{t \cdot 2 t}{1+t^{2}} & \frac{-2 t}{1+t^{2}}+\mathrm{t}\left(\frac{1-t^{2}}{1+t^{2}}\right) \\
-\left(\frac{1-t^{2}}{1+t^{2}}\right)+\frac{2 t}{1+t^{2}} & -\mathrm{t}\left(\frac{-2 t}{1+t^{2}}\right)+\left(\frac{1-t^{2}}{1+t^{2}}\right)
\end{array}\right]
\end{aligned}
$$

$$
\begin{gathered}
=\left[\begin{array}{cc}
\frac{1-t^{2}+2 t^{2}}{1+t^{2}} & \frac{-2 t+t-t^{3}}{1+t^{2}} \\
\frac{-t+t^{3}+2 t}{1+t^{2}} & \frac{2 t^{2}+1-t^{2}}{1+t^{2}}
\end{array}\right] \\
=\left[\begin{array}{ll}
\frac{1+t^{2}}{1+t^{2}} & \frac{-t^{3}-t}{1+t^{2}} \\
\frac{t^{3}+t}{1+t^{2}} & \frac{t^{2}+1}{1+t^{2}}
\end{array}\right] \\
=\left[\begin{array}{ll}
1 & \frac{-t\left(1+t^{2}\right)}{1+t^{2}} \\
\frac{t\left(1+t^{2}\right)}{1+t^{2}} & \frac{t^{2}+1}{1+t^{2}}
\end{array}\right]
\end{gathered}
$$

$=\left[\begin{array}{rr}1 & -t \\ t & 1\end{array}\right]$
L.H.S = R.H.S

Hence prove
6. Construct a 3×4 matrix, whose element are given by aij $=\frac{1}{2}|-3 i+j|$ Ans. Let

$$
\begin{gathered}
A=\left[\begin{array}{llll}
\mathrm{a}_{11} & \mathrm{a}_{12} & \mathrm{a}_{13} & \mathrm{a}_{14} \\
\mathrm{a}_{21} & \mathrm{a}_{22} & \mathrm{a}_{23} & \mathrm{a}_{24} \\
\mathrm{a}_{31} & \mathrm{a}_{32} & \mathrm{a}_{33} & \mathrm{a}_{34}
\end{array}\right]_{3 \times 4} \\
\mathrm{a}_{11}=1, \mathrm{a}_{12}=\frac{1}{2}, \mathrm{a}_{13}=0, \mathrm{a}_{14}=\frac{1}{2} \\
\mathrm{a}_{21}=\frac{5}{2}, \mathrm{a}_{22}=2, \mathrm{a}_{23}=\frac{3}{2}, \mathrm{a}_{24}=1 \\
\mathrm{a}_{31}=4, \mathrm{a}_{32}=\frac{7}{2}, \mathrm{a}_{33}=3, \mathrm{a}_{34}=\frac{5}{2}
\end{gathered}
$$

$$
A=\left[\begin{array}{cccc}
1 & \frac{1}{2} & 0 & \frac{1}{2} \\
\frac{5}{2} & 2 & \frac{3}{2} & 1 \\
4 & \frac{7}{2} & 3 & \frac{5}{2}
\end{array}\right]_{3 \times 4}
$$

7. Obtain the inverse of the following matrix using elementary operations

$$
A=\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 3 \\
3 & 1 & 1
\end{array}\right]
$$

Ans. $A=L A$

$$
\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 3 \\
3 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot A
$$

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
3 & 1 & 1
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] . A \quad R_{1} \Leftrightarrow R_{2}
$$

$D=$

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & -5 & -8
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & -3 & 1
\end{array}\right] . A \quad R_{3} \rightarrow R_{3}-3 R_{1}
$$

$$
\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & -5 & -8
\end{array}\right]=\left[\begin{array}{ccc}
-2 & 1 & 0 \\
1 & 0 & 0 \\
0 & -3 & 1
\end{array}\right] . A \quad R_{1} \rightarrow R_{1}-2 R_{2}
$$

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & 0 & 2
\end{array}\right]=\left[\begin{array}{ccc}
-2 & 1 & 0 \\
1 & 0 & 0 \\
5 & -3 & 1
\end{array}\right] . A \quad R_{3} \rightarrow R_{3}+5 R_{2}} \\
& {\left[\begin{array}{lll}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
-2 & 1 & 0 \\
1 & 0 & 0 \\
\frac{5}{2} & \frac{-3}{2} & \frac{1}{2}
\end{array}\right] \cdot A \quad R_{3} \rightarrow \frac{1}{2} R_{3}} \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
\frac{1}{2} & \frac{-1}{2} & \frac{1}{2} \\
1 & 0 & 0 \\
\frac{5}{2} & \frac{-3}{2} & \frac{1}{2}
\end{array}\right] \cdot A \quad \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{3}} \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{2} & \frac{-1}{2} & \frac{1}{2} \\
-4 & 3 & -1 \\
\frac{5}{2} & \frac{-3}{2} & \frac{1}{2}
\end{array}\right] . A} \\
& A^{-1}=\left[\begin{array}{lll}
\frac{1}{2} & \frac{-1}{2} & \frac{1}{2} \\
-4 & 3 & -1 \\
\frac{5}{2} & \frac{-3}{2} & \frac{1}{2}
\end{array}\right]
\end{aligned}
$$

8. Let

$$
A=\left[\begin{array}{rr}
2 & -1 \\
3 & 4
\end{array}\right], \quad \mathrm{B}=\left[\begin{array}{ll}
5 & 2 \\
7 & 4
\end{array}\right], \quad \mathrm{C}=\left[\begin{array}{ll}
2 & 5 \\
3 & 8
\end{array}\right]
$$

Find a matrix D such that $C D-A B=0$
Ans. Let $D=\left[\begin{array}{ll}a & \mathrm{~b} \\ \mathrm{c} & \mathrm{d}\end{array}\right]$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
2 & 5 \\
3 & 8
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]-\left[\begin{array}{ll}
2 & -1 \\
3 & 4
\end{array}\right]\left[\begin{array}{ll}
5 & 2 \\
7 & 4
\end{array}\right]=0} \\
& {\left[\begin{array}{cc}
2 a+5 c & 2 b+5 d \\
3 a+8 c & 3 b+8 d
\end{array}\right]-\left[\begin{array}{cc}
3 & 0 \\
43 & 22
\end{array}\right]=0} \\
& {\left[\begin{array}{ll}
2 a+5 c-3 & 2 b+5 d \\
3 a+8 c-43 & 3 b+8 d-22
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right]}
\end{aligned}
$$

$2 a+5 c-3=0$
$2 b+5 d=0$
$3 a+8 c-43=0$
$3 b+8 d-22=0$
$\mathrm{a}=-191, \mathrm{~b}=-110, \mathrm{c}=77, \mathrm{~d}=44$

$$
D=\left[\begin{array}{cc}
-191 & -110 \\
77 & 44
\end{array}\right]
$$

9. If $A=\left[\begin{array}{cc}3 & -4 \\ 1 & 1\end{array}\right]$, then prove that

$$
A^{n}=\left[\begin{array}{ll}
1+2 \mathrm{n} & -4 \mathrm{n} \\
\mathrm{n} & 1-2 \mathrm{n}
\end{array}\right]
$$

where \mathbf{n} is any positive integer
Ans. For $\mathrm{n}=1$
$\therefore A^{\prime}=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]$
Hence result is true for $\mathrm{n}=1$

Let result is true for $\mathrm{n}=\mathrm{k}$

$$
A^{K}=\left[\begin{array}{cc}
1+2 \mathrm{~K} & -4 \mathrm{~K} \\
\mathrm{~K} & 1-2 \mathrm{~K}
\end{array}\right](i)
$$

now, we prove their result is true for $\mathbf{n}=\mathbf{k + 1}$
$A^{t+1}=A A^{K}$

$$
\begin{gathered}
=\left[\begin{array}{ll}
3 & -4 \\
1 & -1
\end{array}\right] \cdot\left[\begin{array}{cc}
1+2 \mathrm{~K} & -4 \mathrm{~K} \\
\mathrm{~K} & 1-2 \mathrm{~K}
\end{array}\right] \\
=\left[\begin{array}{ll}
2 \mathrm{~K}+3 & -4 \mathrm{~K}-4 \\
\mathrm{~K}+1 & -2 \mathrm{~K}-1
\end{array}\right]
\end{gathered}
$$

$\therefore P(K+1)$ is true Hence $P(n)$ is true.
10. for what values of x

$$
\left[\begin{array}{lll}
1 & 2 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 0 \\
2 & 0 & 1 \\
1 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
0 \\
2 \\
x
\end{array}\right]=0
$$

Ans.

$$
\begin{gathered}
{\left[\begin{array}{lll}
1 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
0+4+0 \\
0+0+x \\
0+0+2 \mathrm{x}
\end{array}\right]=0} \\
{\left[\begin{array}{lll}
1 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
4 \\
\mathrm{x} \\
2 \mathrm{x}
\end{array}\right]=0}
\end{gathered}
$$

$$
4+2 x+2 x=0
$$

$$
4 x=-4
$$

$$
x=-1
$$

11. Find the matrix X so that

$$
X\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]=\left[\begin{array}{ccc}
-7 & -8 & -9 \\
2 & 4 & 6
\end{array}\right]
$$

Ans. Let $X=\left[\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right]$

$$
\begin{gathered}
\therefore\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]=\left[\begin{array}{ccc}
-7 & -8 & -9 \\
2 & 4 & 6
\end{array}\right] \\
{\left[\begin{array}{lll}
\mathrm{a}+4 \mathrm{~b} & 2 \mathrm{a}+5 \mathrm{~b} & 3 \mathrm{a}+6 \mathrm{~b} \\
\mathrm{c}+4 \mathrm{~d} & 2 \mathrm{c}+5 \mathrm{~d} & 3 \mathrm{c}+6 \mathrm{~d}
\end{array}\right]=\left[\begin{array}{ccc}
-7 & -8 & -9 \\
2 & 4 & 6
\end{array}\right]}
\end{gathered}
$$

$$
a=1, b=-2, c=2, d=0
$$

$$
X=\left[\begin{array}{cc}
1 & -2 \\
2 & 0
\end{array}\right]
$$

12. $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$, Show that

$$
(a I+b A)^{n}=a^{n} I+n a^{n-1} b A
$$

Where I is the identify matrix of order 2 and $n \in N$ Ans. When $\mathrm{n}=1$

$$
(a I+b a)^{1}=a^{1} I+1 \cdot a^{1-1} \cdot b a
$$

$a l+b A=a l+b A$
L.H.S = R.H.S

When $\mathrm{n}=\mathrm{k}$
$(a l+b A)^{K}=A^{K} I+K a^{K-1} b A$.
Result is true for $\mathbf{n}=k$
When $\mathrm{n}=\mathrm{k}+1$
$(\mathrm{al}+\mathrm{bA})^{\mathrm{k}+1}=(\mathrm{al}+\mathrm{bA}) \cdot(\mathrm{al}+\mathrm{bA})^{\mathrm{k}}$
$=(\mathbf{a l}+\mathbf{b A}) \cdot\left(\mathbf{a}^{\mathbf{k}} \mathbf{l}+\mathbf{k a}^{\mathbf{k}-\mathbf{1}} \mathbf{b a}\right.$) From (i)
$=a l\left(a^{k} I+k a^{k-1} b a\right)+b A\left(a^{k} I+k a^{k-1} b A\right)$
$=a^{k+1} I+k a^{k} b a+a^{k} b a+k a^{k-1} b^{2} A^{2}$
$\left[\begin{array}{l}\because I I=I \\ I A=A=A I\end{array}\right]$
$=\mathbf{a}^{\mathbf{k}+1}+(\mathbf{k}+1) \mathbf{a}^{\mathbf{k}} \mathbf{b} \mathbf{A}\left[\because A^{2}=0\right]$
Hence result is true for $\mathrm{n}=\mathrm{k}+1$
When eves it is true for $\mathbf{n}=\mathbf{k}$
13. Find the values of x, y, z if the matrix

$$
A=\left[\begin{array}{ccc}
0 & 2 \mathrm{y} & \mathrm{z} \\
\mathrm{x} & \mathrm{y} & -\mathrm{z} \\
\mathrm{x} & -\mathrm{y} & \mathrm{z}
\end{array}\right]
$$

Satisfy the equation $A^{\prime} A=\mathrm{I}_{3}$
Ans.

$$
A^{\prime} A=I_{3}(\text { Given })
$$

$$
\begin{gathered}
{\left[\begin{array}{lll}
0 & \mathrm{x} & \mathrm{x} \\
2 y & \mathrm{y} & -\mathrm{y} \\
\mathrm{z} & -\mathrm{z} & \mathrm{z}
\end{array}\right]\left[\begin{array}{ccc}
0 & 2 \mathrm{y} & \mathrm{z} \\
x & \mathrm{y} & -\mathrm{z} \\
\mathrm{x} & -\mathrm{y} & \mathrm{z}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
{\left[\begin{array}{lll}
2 \mathrm{y}^{2} & 0 & 0 \\
0 & 6 \mathrm{y}^{2} & 0 \\
0 & 0 & 3 z^{2}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
x= \pm \frac{1}{\sqrt{2}}, y= \pm \frac{1}{\sqrt{6}}, z= \pm \frac{1}{\sqrt{3}}
\end{gathered}
$$

14. If $A=\left[\begin{array}{rr}3 & 1 \\ -1 & 2\end{array}\right]$, Show that $\mathbf{A}^{2}-5 \mathbf{A}=7 \mathbf{7 I}=\mathbf{0}$

Ans. $A^{2}-5 A+7 I=0$

$$
L . H . S=\left[\begin{array}{cc}
8 & 5 \\
-5 & 3
\end{array}\right]-\left[\begin{array}{cc}
15 & 5 \\
-5 & 10
\end{array}\right]+\left[\begin{array}{ll}
7 & 0 \\
0 & 7
\end{array}\right]
$$

$$
=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=R \cdot H \cdot S
$$

$$
\begin{aligned}
& =55\left[\begin{array}{ll}
3 & 1 \\
-1 & 2
\end{array}\right]-126\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
165 & 55 \\
-55 & 110
\end{array}\right]+\left[\begin{array}{ll}
-126 & 0 \\
0 & -126
\end{array}\right]
\end{aligned}
$$

$$
=\left[\begin{array}{cc}
39 & 55 \\
-55 & -16
\end{array}\right]
$$

15. If A is a square matrix such that $A^{2}=A$, then $(I+A)^{3}-7 A$ is equal to

Ans. $(I+A)^{3}-7 A=I^{3}+A^{3}+3 I A(I+A)-7 A$
$=I+A^{3}+3 I^{2} A+3 I A^{2}-7 A$
$=I+A^{3}+3 A+3 A^{2}-7 A$
$=I+A^{3}+3 A+3 A-7 A\left\{A^{2}=A\right\}$

$$
\begin{aligned}
& A^{2}=5 A-71 \\
& A^{2}=A^{2} . A \\
& =(5 A-7 I) \cdot A \\
& =5 A^{2}-7 A I \\
& =5 \mathbf{A}^{2}-7 \mathbf{A} \quad[\because L A=A] \\
& =5(5 A-7 I)-7 A \\
& =25 A-35 I-7 A \\
& =18 A-35 I \\
& A^{4}=A^{3} . A \\
& =(18 A-35 I) . A \\
& =18 A^{2}-351 A \\
& =18(5 A-7 I)-35 A \\
& =90 A-126 I-35 A \\
& =55 A-126 I
\end{aligned}
$$

$=\mathbf{I}+\mathbf{A}^{3}-\mathbf{A}\left\{\begin{array}{l}A^{2}=A \\ A^{3}=A^{2}\end{array}\right\}$
$=I+A^{2}-A$
$=I+A-A\left\{A^{2}=A\right\}$
$=1$
16. Construct 2×3 matrix whose element aij are given by

$$
\text { aij }=\left[\begin{array}{lll}
2 \mathrm{i}+\mathrm{j} & \text { when } & \mathrm{i}<\mathrm{j} \\
4 \mathrm{i} . \mathrm{j} & \text { when } & \mathrm{i}=\mathrm{j} \\
\mathrm{i}+2 \mathrm{j} & \text { when } & \mathrm{i}>\mathrm{j}
\end{array}\right]
$$

Ans.

$$
A=\left[\begin{array}{lll}
\mathrm{a}_{11} & \mathrm{a}_{12} & \mathrm{a}_{13} \\
\mathrm{a}_{21} & \mathrm{a}_{22} & \mathrm{a}_{23}
\end{array}\right]_{2 \times 3}
$$

For $\mathbf{i}=\mathbf{j}$
aij $=4 \mathrm{i} . \mathrm{j}$
$a_{11}=4 \times 1=4$
$a_{22}=4 \times 2 \times 2=16$
For $\mathrm{i}<\mathrm{j}$
aij $=\mathbf{2 i}+\mathbf{j}$
$a_{12}=2 \times 1+2=4$
$a_{13}=2 \times 1+3=5$
$a_{23}=2 \times 2+3=7$
For $\mathrm{i}>\mathrm{j}$
aij $=I+2 j$
$a_{21}=2+2 \times 1=4$

$$
A=\left[\begin{array}{ccc}
4 & 4 & 5 \\
4 & 16 & 7
\end{array}\right]
$$

17. If

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
3 & -2 & 1 \\
4 & 2 & 1
\end{array}\right]
$$

then show that $A^{3}-23 A-401=0$
Ans.

$$
\left.\begin{array}{c}
A^{2}=A \cdot A\left[\begin{array}{lll}
19 & 4 & 8 \\
1 & 12 & 8 \\
14 & 6 & 15
\end{array}\right] \\
A^{3}=A A^{2}\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & -2 & 1 \\
4 & 2 & 1
\end{array}\right]\left[\begin{array}{lll}
19 & 4 & 8 \\
1 & 12 & 8 \\
14 & 6 & 15
\end{array}\right] \\
\\
=\left[\begin{array}{ccc}
63 & 46 & 69 \\
69 & -6 & 23 \\
92 & 46 & 63
\end{array}\right] \\
A^{3}-23 A-40 I=\left[\begin{array}{lll}
63 & 46 & 69 \\
69 & -6 & 23 \\
92 & 46 & 63
\end{array}\right] \\
-23
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 3 \\
3 & -2 & 1 \\
4 & 2 & 1
\end{array}\right]-40\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

18. Express the matrix

$$
B=\left[\begin{array}{lll}
2 & -2 & -4 \\
-1 & 3 & 4 \\
1 & -2 & -3
\end{array}\right]
$$

as the sum of a symmetric and a skew symmetric matrix.
Ans.

$$
B^{\prime}=\left[\begin{array}{ccc}
2 & -1 & 1 \\
-2 & 3 & -2 \\
-4 & 4 & -3
\end{array}\right]
$$

Let

$$
\begin{gathered}
P=\frac{1}{2}\left(B+B^{\prime}\right)=\left[\begin{array}{ccc}
2 & \frac{-3}{2} & \frac{-3}{2} \\
\frac{-3}{2} & 3 & 1 \\
\frac{-3}{2} & 1 & -3
\end{array}\right] \\
P^{\prime}=\left[\begin{array}{ccc}
\frac{-3}{2} & \frac{-3}{2} & \frac{-3}{2} \\
\frac{-3}{2} & 1 & -3
\end{array}\right]=P \\
\text { Thus } \mathrm{P}=\frac{1}{2}(\mathrm{~B}+\mathrm{B})
\end{gathered}
$$

is a symmetric matrix

Let

$$
\begin{aligned}
Q=\frac{1}{3}\left(B-B^{\prime}\right) & =\left[\begin{array}{ccc}
0 & \frac{-1}{2} & \frac{-5}{2} \\
\frac{1}{2} & 0 & 3 \\
\frac{5}{2} & -3 & 0
\end{array}\right] \\
Q^{\prime} & =\left[\begin{array}{ccc}
0 & \frac{-1}{2} & \frac{5}{2} \\
\frac{-1}{2} & 0 & -3 \\
\frac{-5}{2} & 3 & 0
\end{array}\right] \\
Q^{\prime} & =\left[\begin{array}{ccc}
\frac{1}{2} & 0 & 3 \\
0 & \frac{-1}{2} & \frac{-5}{2} \\
\frac{5}{2} & \frac{-3}{2} & 0
\end{array}\right]
\end{aligned}
$$

$Q^{\prime}=-Q$
Thus $Q=\frac{1}{2}(B-B)$ is a skew symmetric matrix

$$
P+Q=\left[\begin{array}{ccc}
2 & \frac{-3}{2} & \frac{-3}{2} \\
\frac{-3}{2} & 3 & 1 \\
\frac{-3}{2} & 1 & -3
\end{array}\right]+\left[\begin{array}{ccc}
0 & \frac{-1}{2} & \frac{-5}{2} \\
\frac{1}{2} & 0 & 3 \\
\frac{5}{2} & -3 & 0
\end{array}\right]
$$

19. If

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] \text {, prove that } A^{n}=\left[\begin{array}{lll}
3^{n-1} & 3^{n-1} & 3^{n-1} \\
3^{n-1} & 3^{n-1} & 3^{n-1} \\
3^{n-1} & 3^{n-1} & 3^{n-1}
\end{array}\right]
$$

Ans. For $\mathrm{n}=1$

$$
A^{\prime}=\left[\begin{array}{lll}
3^{1-1} & 3^{1-1} & 3^{1-1} \\
3^{1-1} & 3^{1-1} & 3^{1-1} \\
3^{1-1} & 3^{1-1} & 3^{1-1}
\end{array}\right]=\left[\begin{array}{ccc}
3^{0} & 3^{0} & 3^{0} \\
3^{0} & 3^{0} & 3^{0} \\
3^{0} & 3^{0} & 3^{0}
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

Result is true for $\mathrm{n}=1$
Let it be true for $\mathbf{n}=\mathrm{k}$

$$
A^{k}=\left[\begin{array}{lll}
3^{k=1} & 3^{k-1} & 3^{k-1} \\
3^{k-1} & 3^{k-1} & 3^{k-1} \\
3^{k-1} & 3^{k-1} & 3^{k=1}
\end{array}\right]
$$

$\therefore A^{k+1}=A \cdot A k$

$$
\begin{gathered}
=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
3^{k-1} & 3^{k-1} & 3^{k-1} \\
3^{k-1} & 3^{k-1} & 3^{k-1} \\
3^{k-1} & 3^{k-1} & 3^{k-1}
\end{array}\right] \\
=\left[\begin{array}{lll}
3.3^{k-1} & 3.3^{k-1} & 3.3^{k-1} \\
3.3^{k-1} & 3.3^{k-1} & 3.3^{k-1} \\
3.3^{k-1} & 3.3^{k-1} & 3.3^{k-1}
\end{array}\right]
\end{gathered}
$$

$$
\left[\begin{array}{ccc}
3^{k} & 3^{k} & 3^{k} \\
3^{k} & 3^{k} & 3^{k} \\
3^{k} & 3^{k} & 3^{k}
\end{array}\right]
$$

Thus result is true for $\mathbf{n}=\mathbf{k + 1}$
Whenever it is true for $\mathbf{n}=k$
20. If

$$
A=\left[\begin{array}{cc}
8 & 0 \\
4 & -2 \\
3 & 6
\end{array}\right] B=\left[\begin{array}{cc}
2 & -2 \\
4 & 2 \\
-5 & 1
\end{array}\right]
$$

then find the matrix X such that $2 A+3 X=5 B$.
Ans. $3 X=5 B-2 A$

$$
\begin{aligned}
& =5\left[\begin{array}{cc}
2 & -2 \\
4 & 2 \\
-5 & 1
\end{array}\right]-2\left[\begin{array}{cc}
8 & 0 \\
4 & -2 \\
3 & 6
\end{array}\right] \\
& =\left[\begin{array}{cc}
10 & -10 \\
20 & 10 \\
-25 & 5
\end{array}\right]+\left[\begin{array}{cc}
-16 & 0 \\
-8 & 4 \\
-6 & -12
\end{array}\right]
\end{aligned}
$$

$$
\left[\begin{array}{ll}
-6 & -10 \\
12 & 14 \\
-31 & -7
\end{array}\right]
$$

$$
X=\frac{1}{3}\left[\begin{array}{ll}
-6 & -10 \\
12 & 14 \\
-31 & -7
\end{array}\right]
$$

21. If

$$
A=\left[\begin{array}{ll}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]
$$

then prove that

$$
A^{n}=\left[\begin{array}{ll}
\cos n \theta & \sin n \theta \\
-\sin n \theta & \cos n \theta
\end{array}\right]
$$

Ans. For $\mathrm{n}=1$

$$
A^{\prime}=\left[\begin{array}{cc}
\cos 1 . \theta & \sin 1 . \theta \\
-\sin 1 . \theta & \cos 1 . \theta
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]
$$

Result is true for $\mathrm{n}=1$

Let result is true for $\mathbf{n}=\mathrm{k}$

$$
A^{k}=\left[\begin{array}{ll}
\cos k \theta & \operatorname{sink} \theta \\
-\operatorname{sink} \theta & \operatorname{cosk} \theta
\end{array}\right]
$$

for $\mathrm{n}=\mathrm{k}+1$
$A^{k+1}=A . A^{k}$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right] \cdot\left[\begin{array}{cc}
\cos k \theta & \operatorname{sink} \theta \\
-\operatorname{sink} \theta & \operatorname{cosk} \theta
\end{array}\right] \\
& =\left[\begin{array}{ll}
\cos \theta \cdot \operatorname{cosk} \theta-\sin \theta \cdot \operatorname{sink} \theta & \cos \theta \cdot \operatorname{sink} \theta+\sin \theta \cdot \operatorname{cosk} \theta \\
\sin \theta \cdot \operatorname{cosk} \theta-\cos \theta \cdot \operatorname{sink} \theta & -\sin \theta \cdot \operatorname{sink} \theta+\cos \theta \cdot \operatorname{cosk} \theta
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{ll}
\cos (\theta+\mathrm{k} \theta) & \sin (\theta+\mathrm{k} \theta) \\
-\sin (\theta+\mathrm{k} \theta) & \cos (\theta+\mathrm{k} \theta)
\end{array}\right] \\
& =\left[\begin{array}{ll}
\cos (k+1) \theta & \sin (k+1) \theta \\
-\sin (k+1) \theta & \cos (k+1) \theta
\end{array}\right]
\end{aligned}
$$

Thus result is true for $\mathbf{n}=\mathbf{k + 1}$ Whenever result is true for $\mathbf{n}=\mathbf{k}$
22. Find X and Y, if $2 x+3 y=$

$$
\left[\begin{array}{ll}
2 & 3 \\
4 & 0
\end{array}\right] \text { and } 3 x+2 y=\left[\begin{array}{cr}
2 & -2 \\
-1 & 5
\end{array}\right]
$$

Ans. On adding

$$
5 x+5 y=\left[\begin{array}{ll}
2 & 3 \\
4 & 0
\end{array}\right]+\left[\begin{array}{rr}
2 & -2 \\
-1 & 5
\end{array}\right]
$$

$$
5(x+y)=3\left[\begin{array}{ll}
4 & 1 \\
4 & 5
\end{array}\right]
$$

$$
(x+y)=\frac{1}{5}\left[\begin{array}{cc}
\frac{4}{5} & \frac{1}{5} \\
\frac{3}{5} & 1
\end{array}\right]
$$

$$
\begin{aligned}
& x-y=\left[\begin{array}{cc}
2 & -2 \\
-1 & 5
\end{array}\right]-\left[\begin{array}{ll}
2 & 3 \\
4 & 0
\end{array}\right] \\
& x-y=\left[\begin{array}{rr}
0 & 3 \\
-5 & 5
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& 2 x=\left[\begin{array}{ll}
\frac{4}{5} & \frac{-24}{5} \\
\frac{-22}{5} & 6
\end{array}\right] \\
& x=\left[\begin{array}{ll}
\frac{2}{5} & \frac{-12}{5} \\
\frac{-11}{5} & 3
\end{array}\right] \\
& x+y=\left[\begin{array}{ll}
\frac{4}{5} & \frac{1}{5} \\
\frac{3}{5} & 1
\end{array}\right] \\
& {\left[\begin{array}{ll}
\frac{2}{5} & \frac{-12}{5} \\
\frac{-11}{5} & 3
\end{array}\right]+y=\left[\begin{array}{ll}
\frac{4}{5} & \frac{1}{5} \\
\frac{3}{5} & \frac{1}{1}
\end{array}\right] }
\end{aligned}
$$

$$
\begin{aligned}
y & =\left[\begin{array}{ll}
\frac{4}{5} & \frac{1}{5} \\
\frac{3}{5} & 1
\end{array}\right]+\left[\begin{array}{cc}
\frac{-2}{5} & \frac{12}{5} \\
\frac{11}{5} & -3
\end{array}\right] \\
& =\left[\begin{array}{ll}
\frac{4}{5}-\frac{2}{5} & \frac{1}{5}+\frac{12}{5} \\
\frac{3}{5}+\frac{11}{5} & 1-3
\end{array}\right] \\
& =\left[\begin{array}{ll}
\frac{2}{5} & \frac{13}{5} \\
\frac{14}{5} & -2
\end{array}\right]
\end{aligned}
$$

