Important Questions Class 12 Maths Chapter 4 Determinants

1 Mark Questions

1. Find values of x for which $\left|\begin{array}{ll}3 & x \\ x & 1\end{array}\right|=\left|\begin{array}{ll}3 & 2 \\ 4 & 1\end{array}\right|$.

Ans. $(3-x)^{2}=3-8$
$3-x^{2}=3-8$
$-x^{2}=-8$
$x= \pm \sqrt{8}$
$x= \pm 2 \sqrt{2}$
2. A be a square matrix of order 3×3, there $|K A|$ is equal to

Ans. $|\mathrm{KA}|=\mathrm{K}^{\mathrm{n}}|\mathrm{A}|$
$\mathrm{N}=3$

$$
|\mathrm{KA}|=\mathrm{K}^{3}|\mathrm{~A}|
$$

3. Evaluate

$$
\Delta=\left|\begin{array}{lll}
3 & 2 & 3 \\
2 & 2 & 3 \\
3 & 2 & 3
\end{array}\right|
$$

Ans.

$$
\Delta=0\left[C_{1} \text { and } C_{3} \text { identical }\right]
$$

4. Let $\left|\begin{array}{ll}4 & y \\ x & 1\end{array}\right|=\left|\begin{array}{ll}4 & 2 \\ 4 & 1\end{array}\right|$ find all the possible value of \mathbf{x} and \mathbf{y} if \mathbf{x} and \mathbf{y} are natural numbers.

Ans. $4-x y=4-8$
$x y=8$
of $x=1 x=4 x=8$
$y=8 y=1 y=1$

5. Solve

$$
\left|\begin{array}{ll}
x^{2}-x+1 & x+1 \\
x+1 & x+1
\end{array}\right|
$$

Ans. $\left(x^{2}-x+1\right)(x+1)-(x+1)(x-1)$
$=x^{3}-x^{2}+x+x^{2}-x+1-\left(x^{2}-1\right)$
$=x^{3}+1-x^{2}+1$
$=x^{3}-x^{2}+x^{2}$
6. Find minors and cofactors of all the elements of the det. $\left|\begin{array}{rr}1 & -2 \\ 4 & 3\end{array}\right|$

Ans.

$$
\begin{gathered}
M_{11}=3, \quad A_{11}=3 \\
M_{12}=4, \quad A_{12}=-4\left[\because A i j=(-1)^{i+J} . M i J\right] \\
M_{21}=-2, \quad A_{21}=2 \\
M_{22}=1, \quad A_{22}=1
\end{gathered}
$$

7. Evaluate

$$
\left|\begin{array}{lll}
102 & 18 & 36 \\
1 & 3 & 4 \\
17 & 3 & 6
\end{array}\right|
$$

Ans.

$$
=\left|\begin{array}{lll}
102 & 18 & 36 \\
1 & 3 & 4 \\
17 & 3 & 6
\end{array}\right|=\left|\begin{array}{ccc}
6 \times 17 & 6 \times 3 & 6 \times 6 \\
1 & 3 & 4 \\
17 & 3 & 6
\end{array}\right|
$$

$$
=\left|\begin{array}{lll}
17 & 3 & 6 \\
1 & 3 & 4 \\
17 & 3 & 6
\end{array}\right|=0
$$

[R_{1} and R_{3} are identical]

8. Show that

$$
\left|\begin{array}{rr}
\sin 10^{\circ} & -\cos 10^{\circ} \\
\sin 80^{\circ} & \cos 80^{\circ}
\end{array}\right|=1
$$

Ans.

$$
=\sin 10 \cdot \cos 80+\cos 10 \sin 80
$$

$$
\begin{aligned}
& =\sin (10+90) \\
& =[\because \sin A \cos B+\cos A \cdot \sin B=\sin (A+B)]
\end{aligned}
$$

$$
\begin{aligned}
& =\sin 90 \\
& =1
\end{aligned}
$$

9. Find value of \mathbf{x}, if $\left|\begin{array}{ll}2 & 4 \\ 5 & 1\end{array}\right|=\left|\begin{array}{cc}2 x & 4 \\ 6 & x\end{array}\right|$

Ans. $(2-20)=\left(2 x^{2}-24\right)$
$-18=2 \times 2-24$
$-2 x^{2}=-24+18$
$-2 x^{2}=6$
$2 x^{2}=6$
$x^{2}=3$
$x= \pm \sqrt{3}$
10. Find adj A for $\quad A=\left[\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right]$

Ans. adJ A $=\left[\begin{array}{cc}4 & -3 \\ -1 & 2\end{array}\right]$

$\left[\begin{array}{ll} \because A= & A \\ \text { change sign } & \text { inter-change } \end{array}\right.$

11. Without expanding, prove that

$$
\Delta=\left|\begin{array}{ccc}
x+y & y+z & z+x \\
z & x & y \\
1 & 1 & 1
\end{array}\right|=0
$$

Ans. $R_{1} \rightarrow R_{1}+R_{2}$

$$
\begin{aligned}
\Delta= & \left|\begin{array}{ccc}
x+y+z & x+y+z & x+y+z \\
z & x & y \\
1 & 1 & 1
\end{array}\right| \\
\Delta & =(x+y+z)\left|\begin{array}{lll}
1 & 1 & 1 \\
z & x & y \\
1 & 1 & 1
\end{array}\right| \\
& =0\left[\begin{array}{l}
\because R_{1} \text { and } R_{3} \\
\text { area identical }
\end{array}\right]
\end{aligned}
$$

12. If matrix

$$
A=\left[\begin{array}{ccc}
1 & -2 & 3 \\
1 & 2 & 1 \\
\mathrm{x} & 2 & -3
\end{array}\right]
$$

is singular, find x .

Ans. For singular $|\mathrm{A}|=0$
$1(-6-2)+2(-3-x)+3(2-2 x)=0$
$-8-6-2 x+6-6 x=0$
$-8 \mathrm{x}=+8$
$x=-1$
13. Show that, using properties if det.

$$
\left|\begin{array}{ccc}
1 & x & x^{2} \\
x^{2} & 1 & x \\
\mathrm{x} & \mathrm{x}^{2} & 1
\end{array}\right|=\left(1-x^{3}\right)^{2}
$$

Ans.

$$
\begin{aligned}
& C_{1} \rightarrow C_{1}+C_{2}+C_{3} \\
& =\left|\begin{array}{ccc}
1+\mathrm{x}+\mathrm{x}^{2} & \mathrm{x} & \mathrm{x}^{2} \\
1+\mathrm{x}+\mathrm{x}^{2} & 1 & \mathrm{x} \\
1+\mathrm{x}+\mathrm{x}^{2} & \mathrm{x}^{2} & 1
\end{array}\right| \\
& =\left(1+\mathrm{x}+\mathrm{x}^{2}\right)\left|\begin{array}{ccc}
1 & \mathrm{x} & \mathrm{x}^{2} \\
1 & 1 & \mathrm{x} \\
1 & \mathrm{x}^{2} & 1
\end{array}\right| \\
& R_{1} \rightarrow R_{1}-R_{3} \\
& R_{2} \rightarrow R_{2}-R_{3} \\
& =\left(1+\mathrm{x}+\mathrm{x}^{2}\right)\left|\begin{array}{ccc}
0 & \mathrm{x}-\mathrm{x}^{2} & x^{2}-1 \\
0 & 1-\mathrm{x}^{2} & \mathrm{x}-1 \\
1 & \mathrm{x}^{2} & 1
\end{array}\right|
\end{aligned}
$$

$$
=\left(1+\mathrm{x}+\mathrm{x}^{2}\right)\left|\begin{array}{ccc}
0 & \mathrm{x}(1-\mathrm{x}) & -(1-\mathrm{x})(1+\mathrm{x}) \\
0 & (1-\mathrm{x})(1+\mathrm{x}) & -(1-\mathrm{x}) \\
1 & \mathrm{x}^{2} & 1
\end{array}\right|
$$

Taking $(1-x)$ common from R_{1} and R_{2}

$$
=\left(1+\mathrm{x}+\mathrm{x}^{2}\right)(1-\mathrm{x})^{2}\left|\begin{array}{ccc}
0 & \mathrm{x} & -(1+\mathrm{x}) \\
0 & 1+\mathrm{x} & -1 \\
1 & \mathrm{x}^{2} & 1
\end{array}\right|
$$

Expending along C^{1}

$$
\begin{aligned}
& =\left(1+x+x^{2}\right)(1-x)^{2}\left[-x+(1+x)^{2}\right] \\
& =\left(1+x+x^{2}\right)(1-x)^{2}\left(-x+1+x^{2}+2 x\right) \\
& =(1-x)\left(1+x+x^{2}\right)(1-x)\left(1+x+x^{2}\right) \\
& =\left(1-x^{3}\right)^{2}
\end{aligned}
$$

14. If

$$
\left|\begin{array}{ll}
\mathrm{x} & 2 \\
18 & \mathrm{x}
\end{array}\right|=\left|\begin{array}{ll}
6 & 2 \\
18 & 6
\end{array}\right|
$$

than x is equal to
Ans. $x^{2}-36=36-36$
$x^{2}=36$
$x= \pm \sqrt{6}$
15. $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 4\end{array}\right]$ is singular or not

Ans. $|A|=\left|\begin{array}{ll}1 & 1 \\ 4 & 8\end{array}\right|$
$=8-8$
$=0$
Hence A is singular
16. Without expanding, prove that

$$
\left|\begin{array}{lll}
a & a^{2} & b c \\
b & b^{2} & c a \\
c & c^{2} & a b
\end{array}\right|=\left|\begin{array}{lll}
1 & a^{2} & a^{3} \\
1 & b^{2} & b^{3} \\
1 & c^{2} & c^{3}
\end{array}\right|
$$

Ans.

$$
\begin{aligned}
& \frac{1}{a b c}\left|\begin{array}{lll}
a^{2} & a^{3} & a b c \\
b^{2} & b^{3} & a b c \\
c^{2} & c^{3} & a b c
\end{array}\right|=\left|\begin{array}{lll}
1 & a^{2} & a^{3} \\
1 & b^{2} & b^{3} \\
1 & c^{2} & c^{3}
\end{array}\right| \\
& \frac{a b c}{a b c}=\left|\begin{array}{lll}
a^{2} & a^{3} & 1 \\
b^{2} & b^{3} & 1 \\
c^{2} & c^{3} & 1
\end{array}\right|=\left|\begin{array}{lll}
1 & a^{2} & a^{3} \\
1 & b^{2} & b^{3} \\
1 & c^{2} & c^{3}
\end{array}\right| \\
& \left|\begin{array}{lll}
1 & a^{2} & a^{3} \\
1 & b^{2} & b^{3} \\
1 & c^{2} & c^{3}
\end{array}\right|=\left|\begin{array}{lll}
1 & a^{2} & a^{3} \\
1 & b^{2} & b^{3} \\
1 & c^{2} & c^{3}
\end{array}\right|\left[\begin{array}{l}
C_{1} \leftrightarrow C_{3} \\
C_{2} \leftrightarrow C_{3}
\end{array}\right]
\end{aligned}
$$

Hence Prove
17.

$$
A=\left|\begin{array}{rrr}
2 & -3 & 5 \\
6 & 0 & 4 \\
1 & 5 & -7
\end{array}\right|,
$$

Verify that $\operatorname{det} \mathbf{A}=\operatorname{det}(A)$

Ans.

$$
|A|=2(0-20)+3(-42-4)+5(30-0)
$$

$=-28$

Hence prove.
18. If then show that

Ans.

Hence Prove
19. A be a non - singular square matrix of order 3 . Then is equal to Ans.
$\mathrm{N}=3$
20. If A is an invertible matrix of order 2 , then det is equal $\left(A^{-1}\right)$ to Ans. A is invertible $A A^{-1}=$
$\operatorname{det}\left(\mathrm{AA}^{-1}\right)=\operatorname{det}(\mathrm{I})$
$\operatorname{det} A .\left(\operatorname{det} A^{-1}\right)=\operatorname{det}()$
$\operatorname{det} \mathrm{A}^{-1}=$

4 Marks Questions

1. Show that, using properties of determinants.

OR

Ans. Multiplying $R_{1} R_{2}$ and R_{3} by a, b, c respectively

Taking a, b, c, common from $\mathrm{c}_{1}, \mathrm{c}_{2}$, and c_{3}

Expending along R_{1}

OR \{solve it $\}$
\{hint: \}
Taking common $3(\mathrm{a}+\mathrm{b})$ from C_{1}
2.

Ans.

$$
\begin{aligned}
& R_{1} \rightarrow x R_{1}, \quad R_{2} \rightarrow y R_{2}, \quad R_{3} \rightarrow Z R_{3} \\
& \Delta=\frac{1}{x y z}\left|\begin{array}{lcc}
\mathrm{x}(\mathrm{y}+\mathrm{z})^{2} & \mathrm{x}^{2} \mathrm{y} & \mathrm{x}^{2} \mathrm{z} \\
\mathrm{x} \mathrm{y}^{2} & \mathrm{y}(\mathrm{x}+\mathrm{z})^{2} & \mathrm{y}^{2} \mathrm{z} \\
x z^{2} & \mathrm{yz}^{2} & \mathrm{z}(\mathrm{x}+\mathrm{y})^{2}
\end{array}\right| \\
& \Delta=\frac{x y z}{x y z}\left|\begin{array}{ccc}
(\mathrm{y}+\mathrm{z})^{2} & \mathrm{x}^{2} & \mathrm{x}^{2} \\
\mathrm{y}^{2} & (\mathrm{x}+\mathrm{z})^{2} & \mathrm{y}^{2} \\
z^{2} & \mathrm{z}^{2} & (\mathrm{x}+\mathrm{y})^{2}
\end{array}\right| \\
& C_{2} \rightarrow C_{2}-C_{1}, \quad C_{3} \rightarrow C_{3}-C_{4} \\
& \Delta=\left|\begin{array}{ccc}
(y+z)^{2} & x^{2}-(y+z)^{2} & x^{2}-(y+z)^{2} \\
y^{2} & (x+z)^{2}-y^{2} & 0 \\
z^{2} & 0 & (x+y)^{2}-z^{2}
\end{array}\right|
\end{aligned}
$$

Taking $(x+y+z)$ common from c_{2} and C_{3}

$$
\Delta=(x+y+z)^{2}\left|\begin{array}{ccc}
(\mathrm{y}+\mathrm{z})^{2} & \mathrm{x}-\mathrm{y}-\mathrm{z} & \mathrm{x}-\mathrm{y}-\mathrm{z} \\
y^{2} & \mathrm{x}+\mathrm{z}-\mathrm{y} & 0 \\
\mathrm{z}^{2} & 0 & \mathrm{x}+\mathrm{y}-\mathrm{z}
\end{array}\right|
$$

$$
\begin{aligned}
& R_{1} \rightarrow R_{1}-\left(R_{2}+R_{3}\right) \\
& \Delta=(x+y+z)^{2}\left|\begin{array}{ccc}
2 \mathrm{yz} & -2 \mathrm{z} & -2 \mathrm{y} \\
y^{2} & \mathrm{x}+\mathrm{z}-\mathrm{y} & 0 \\
\mathrm{z}^{2} & 0 & \mathrm{x}+\mathrm{y}-\mathrm{z}
\end{array}\right| \\
& C_{2} \rightarrow C_{2}+\frac{1}{y} C_{1} \text { and } C_{3} \rightarrow C_{3}+\frac{1}{z} C_{1} \\
& \Delta=(x+y+z)^{2}\left|\begin{array}{ccc}
y^{2} & \mathrm{x}+\mathrm{z} & \frac{y^{2}}{z} \\
2 \mathrm{yz} & 0 & z^{2} \\
z^{2} & \frac{\mathrm{x}+\mathrm{y}}{y}
\end{array}\right|
\end{aligned}
$$

Expending along R_{1}

$$
=(x+y+z)^{3}(2 x y z)
$$

3. Find the equation of line joining $(3,1)$ and $(9,3)$ using determinants.

Ans. Let (x, y) be any point on the line containing $(3,1)$ and $(9,3)$

$$
\left|\begin{array}{lll}
x & y & 1 \\
3 & 1 & 1 \\
9 & 3 & 1
\end{array}\right|=0
$$

$x-3 y=0$
4. If

$$
A=\left[\begin{array}{cc}
2 & 3 \\
1 & -4
\end{array}\right] \text { and } B=\left[\begin{array}{cc}
1 & -2 \\
-1 & 3
\end{array}\right]
$$

then verify that $(A B)^{-1}=B^{-1} A^{-1}$
Ans.

$$
\left.\begin{array}{c}
A B=\left[\begin{array}{cc}
2 & 3 \\
1 & -4
\end{array}\right]\left[\begin{array}{ll}
1 & -2 \\
-1 & 3
\end{array}\right] \\
=\left[\begin{array}{cc}
-1 & 5 \\
5 & -14
\end{array}\right] \\
|A B|=-11 \neq 0 \\
=\frac{-1}{11}\left[\begin{array}{ll}
-14 & -5 \\
-5 & -1
\end{array}\right] \\
\left.\begin{array}{c}
A B)^{-1}=\frac{1}{11} a d j(A B) \\
=\frac{1}{11}\left[\begin{array}{ll}
14 & 5 \\
5 & 1
\end{array}\right] \\
|A|=-11 \neq 0 \\
\hline B^{-1} A^{-1}=\frac{-1}{11}\left[\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
-4 & -3 \\
-1 & 2
\end{array}\right] \\
A^{-1}=\frac{-1}{11}\left[\begin{array}{ll}
-4 & -3 \\
-1 & 2
\end{array}\right] \\
B^{-1}=\frac{1}{1}\left[\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right] \\
-14 \\
-5
\end{array}\right] \\
-1
\end{array}\right]
$$

$=\frac{1}{11}\left[\begin{array}{ll}14 & 5 \\ 5 & 1\end{array}\right]$
Hence prove.
5. Using cofactors of elements of third column, evaluate

$$
\Delta=\left|\begin{array}{lll}
1 & x & y z \\
1 & y & z x \\
1 & z & x y
\end{array}\right|
$$

Ans.

$$
\begin{aligned}
& \Delta=a_{13} A_{13}+a_{23} A_{23}+a_{33} A_{33} \\
= & y z(z-y)+z x(x-z)+x y(y-x) \\
= & y z^{2}-y^{2} z+z x^{2}-z^{2} x+x y^{2}-x^{2} y \\
= & z x^{2}-x^{2} y+x y^{2}-z^{2} x+y z^{2}-y^{2} z \\
= & x^{2}(z-y)+x\left(y^{2}-z^{2}\right)+y z(z-y) \\
= & (z-y)\left[x^{2}+x(z+y)+y z\right] \\
= & (z-y)\left[x^{2}-x z-x y+y z\right] \\
= & (z-y[x(x-y)-z(x-y)] \\
= & (z-y)[(x-y)(x-z)] \\
& =(z-y)(x-y)(x-z)
\end{aligned}
$$

6. If

$$
A=\left[\begin{array}{rrr}
2 & -3 & 5 \\
3 & 2 & -4 \\
1 & 1 & -2
\end{array}\right]
$$

find A^{-1}, using A^{-1} solve the system of equations
$2 x-3 y+5 z=11$
$3 x+2 y-4 z=-5$
$x+y-2 z=-3$
Ans.

$$
|A|=\left[\begin{array}{rrr}
2 & -3 & 5 \\
3 & 2 & -4 \\
1 & 1 & -2
\end{array}\right]
$$

(A) $=-1 \neq 0$
A^{-1} exists

$$
\begin{aligned}
& A^{-1}=\frac{1}{|A|}(\operatorname{adjA}) \\
&= \frac{1}{-1}\left[\begin{array}{ccc}
0 & -1 & 2 \\
2 & -9 & 23 \\
1 & -5 & 13
\end{array}\right] \\
&=\left[\begin{array}{ccc}
0 & -1 & -2 \\
-2 & 9 & -23 \\
-1 & 5 & -13
\end{array}\right]
\end{aligned}
$$

The given system of equation can be written is $A x=B, X=A^{-1} B$

$$
\left[\begin{array}{rrr}
2 & -3 & 5 \\
3 & 2 & -4 \\
1 & 5 & -2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
11 \\
-5 \\
3
\end{array}\right]
$$

$$
\begin{aligned}
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] } & =\left[\begin{array}{lll}
2 & -3 & 5 \\
3 & 2 & -4 \\
1 & 5 & -2
\end{array}\right]^{-1}\left[\begin{array}{l}
11 \\
-5 \\
3
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0 & -1 & -2 \\
-2 & 9 & -23 \\
-1 & 5 & -13
\end{array}\right]\left[\begin{array}{l}
11 \\
-5 \\
3
\end{array}\right] \\
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] } & =\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \\
x & =1 \\
y & =2 \\
z & =3
\end{aligned}
$$

7. Show that, using properties of determinants.

$$
\left|\begin{array}{lcc}
1+a^{2}-b^{2} & 2 a b & -2 b \\
2 a b & 1-a^{2}+b^{2} & 2 a \\
2 b & -2 a & 1-a^{2}-b^{2}
\end{array}\right|=\left(1+a^{2}+b^{2}\right)^{3}
$$

Ans. $R_{1} \rightarrow R_{1}+b \cdot R_{3}$

$$
L . H . S=\left|\begin{array}{lcc}
1+\mathrm{a}^{2}+\mathrm{b}^{2} & 0 & -\mathrm{b}\left(1+\mathrm{a}^{2}+\mathrm{b}^{2}\right) \\
2 \mathrm{ab} & 1-\mathrm{a}^{2}+\mathrm{b}^{2} & 2 \mathrm{a} \\
2 \mathrm{~b} & -2 \mathrm{a} & 1-\mathrm{a}^{2}-\mathrm{b}^{2}
\end{array}\right|
$$

Taking common $\left(1+a^{2}+b^{2}\right)$ from R_{1}

$$
=1+a^{2}+b^{2}\left|\begin{array}{ccc}
1 & 0 & -b \\
2 a b & 1-a^{2}+b^{2} & 2 a \\
2 b & -2 a & 1-a^{2}-b^{2}
\end{array}\right|
$$

$R_{1} \rightarrow R_{1}-a \cdot R_{3}$

$$
=1+a^{2}+b^{2}\left|\begin{array}{ccc}
1 & 0 & -b \\
0 & 1+a^{2}+b^{2} & a\left(1+a^{2}+b^{2}\right) \\
2 b & -2 a & 1-a^{2}-b^{2}
\end{array}\right|
$$

Taking (1 $+a^{2}+b^{2}$) common from $\mathbf{R}_{\mathbf{2}}$

$$
=1+a^{2}+b^{2}\left|\begin{array}{ccc}
1 & 0 & -b \\
0 & 1 & a \\
2 b & -2 a & 1-a^{2}-b^{2}
\end{array}\right|
$$

Expending entry \mathbf{R}_{1}

$$
\begin{aligned}
& =\left(1+a^{2}+b^{2}\right)^{2}\left[1\left(1-a^{2}-b^{2}+2 a^{2}\right)-b(-2 b)\right] \\
& =\left(1+a^{2}+b^{2}\right)^{2}\left[1+a^{2}-b^{2}+2 b^{2}\right] \\
& =\left(1+a^{2}+b^{2}\right)^{2}\left(1+a^{2}+b^{2}\right) \\
& =\left(1+a^{2}+b^{2}\right)^{3}
\end{aligned}
$$

8.

$$
\Delta=\left|\begin{array}{ccc}
\mathrm{a}+\mathrm{bx} & \mathrm{c}+\mathrm{dx} & \mathrm{p}+\mathrm{qx} \\
\mathrm{ax}+\mathrm{b} & \mathrm{cx}+\mathrm{d} & \mathrm{px}+\mathrm{q} \\
\mathrm{u} & \mathrm{v} & \mathrm{w}
\end{array}\right|=\left(1-x^{2}\right)\left|\begin{array}{ccc}
a & \mathrm{c} & \mathrm{p} \\
\mathrm{~b} & \mathrm{~d} & \mathrm{q} \\
\mathrm{u} & \mathrm{v} & \mathrm{w}
\end{array}\right|
$$

Ans.

$$
L . H . S=R_{1} \rightarrow R_{1}-x R_{2}
$$

$$
\begin{aligned}
& \Delta=\left|\begin{array}{ccc}
\mathrm{a}\left(1-\mathrm{x}^{2}\right) & \mathrm{c}\left(1-\mathrm{x}^{2}\right) & \mathrm{p}\left(1-\mathrm{x}^{2}\right) \\
\mathrm{ax}+\mathrm{b} & \mathrm{cx}+\mathrm{d} & \mathrm{bx}+\mathrm{q} \\
u & \mathrm{v} & w
\end{array}\right| \\
& \Delta=\left(1-\mathrm{x}^{2}\right)\left|\begin{array}{ccc}
\mathrm{a} & \mathrm{c} & \mathrm{p} \\
\mathrm{ax}+\mathrm{b} & \mathrm{cx}+\mathrm{d} & \mathrm{bx}+\mathrm{q} \\
u & \mathrm{v} & w
\end{array}\right|
\end{aligned}
$$

$$
R_{2} \rightarrow R_{2}-x R_{1}
$$

$$
\Delta=\left(1-\mathrm{x}^{2}\right)\left|\begin{array}{ccc}
\mathrm{a} & \mathrm{c} & \mathrm{p} \\
\mathrm{~b} & \mathrm{~d} & \mathrm{q} \\
u & \mathrm{v} & w
\end{array}\right|
$$

9.

$$
\left|\begin{array}{ccc}
2 & -3 & 5 \\
6 & 0 & 4 \\
1 & 5 & -7
\end{array}\right|
$$

Verify that

$$
a_{11} A_{31}+a_{12} A_{32}+a_{13} A_{33}=0
$$

Ans.

$$
\begin{array}{lll}
a_{11}=2, & a_{12}=-3, & a_{13}=5 \\
A_{31}=-12, & A_{32}=22, & A_{33}=18
\end{array}
$$

$$
L . H S=a_{11} A_{31}+a_{12} A_{32}+a_{13} A_{33}
$$

$=2(-12)+(-3)(22)+5(18)$
$=0$ Hence prove.
10.If $A=\left[\begin{array}{cc}3 & -4 \\ -1 & 2\end{array}\right]$, find matrix \mathbf{B} such that $\mathbf{A B}=\mathbf{I}$

Ans. $|A|=2 \neq 0$
Therefore A^{-1} exists
$A B=1$
$A^{-1} A B=A^{-1} I$
$B=A^{-1}$

$$
\begin{aligned}
& \operatorname{adj} A=\left[\begin{array}{ll}
2 & 4 \\
1 & 3
\end{array}\right] \\
& A^{-1}=\frac{1}{|A|}(\operatorname{adj} A)
\end{aligned}
$$

$=\frac{1}{2}\left[\begin{array}{ll}2 & 4 \\ 1 & 3\end{array}\right]$

$$
\begin{aligned}
& \qquad=\left[\begin{array}{ll}
1 & 2 \\
\frac{1}{2} & \frac{3}{2}
\end{array}\right] \\
& \text { Hence } B=\left[\begin{array}{cc}
1 & 2 \\
\frac{1}{2} & \frac{3}{2}
\end{array}\right]
\end{aligned}
$$

11. Using matrices solve the following system of equation

$$
\begin{aligned}
& \frac{2}{x}+\frac{3}{y}+\frac{10}{z}=4 \\
& \frac{4}{x}-\frac{6}{y}+\frac{5}{z}=1
\end{aligned}
$$

$$
\frac{6}{x}+\frac{9}{y}+\frac{-20}{z}=2
$$

Ans. Let

$$
\frac{1}{x}=4, \quad \frac{1}{y}=v, \quad \frac{1}{z}=w
$$

$$
\begin{aligned}
& 24+3 v+10 v=4 \\
& 44-64+5 w=1 \\
& 64+9 v-20 w=2
\end{aligned}
$$

$$
A=\left[\begin{array}{ccc}
2 & 3 & 10 \\
4 & -6 & 5 \\
6 & 9 & -20
\end{array}\right] \quad y=\left[\begin{array}{l}
y \\
v \\
w
\end{array}\right] \quad B=\left[\begin{array}{l}
4 \\
1 \\
2
\end{array}\right]
$$

$|A|=1200 \neq 0$

$$
\text { aiJA }=\left[\begin{array}{lcc}
75 & 150 & 75 \\
110 & -100 & 30 \\
72 & 0 & -24
\end{array}\right]
$$

$$
A^{-1}=\frac{1}{|A|}(\operatorname{adj} A)=\frac{1}{1200}\left[\begin{array}{ccc}
75 & 150 & 75 \\
110 & -100 & 30 \\
72 & 0 & -24
\end{array}\right]
$$

$y=A^{-1} B$

$$
=\frac{1}{1200}\left[\begin{array}{l}
600 \\
400 \\
240
\end{array}\right]
$$

$$
=\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{3} \\
\frac{1}{5}
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{c}
y \\
v \\
w
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{3} \\
\frac{1}{5}
\end{array}\right]} \\
& u=\frac{1}{2}, \quad v=\frac{1}{3}, \quad w=\frac{1}{5} \\
& \frac{1}{x}=\frac{1}{2}, \quad \frac{1}{y}=\frac{1}{3}, \quad \frac{1}{z}=\frac{1}{5} \\
& x=2, \quad y=3
\end{aligned} \quad z=5
$$

12.Given

$$
A=\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & -2 & -2 \\
2 & 1 & 3
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
-4 & 4 & 4 \\
-7 & 1 & 3 \\
5 & -3 & -1
\end{array}\right]
$$

find $A B$ and use this result in solving the following system of equation.

$$
\begin{aligned}
& x-y+z=4 \\
& x-2 y-2 z=9 \\
& 2 x+y+3 z=1
\end{aligned}
$$

OR
Use product

$$
\left[\begin{array}{rrr}
1 & -1 & 2 \\
0 & 2 & -3 \\
3 & -2 & 4
\end{array}\right]\left[\begin{array}{lll}
-2 & 0 & 1 \\
9 & 2 & -3 \\
6 & 1 & -2
\end{array}\right]
$$

To solve the system of equations.
$x-y+2 z=1$
$2 y-3 z=1$
$3 x-2 y+4 z=2$
Ans. $x-y+z=4$
$x-2 y-2 z=9$
$2 x+y+3 z=1$
Let

$$
A=\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & -2 & -2 \\
2 & 1 & 3
\end{array}\right] \quad X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \quad C=\left[\begin{array}{l}
4 \\
9 \\
1
\end{array}\right]
$$

$A X=C$

$$
A B=\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & -2 & -2 \\
2 & 1 & 3
\end{array}\right]\left[\begin{array}{ccc}
-4 & 4 & 4 \\
-7 & 1 & 3 \\
5 & -3 & -1
\end{array}\right]
$$

$$
=\left[\begin{array}{lll}
8 & 0 & 0 \\
0 & 8 & 0 \\
0 & 0 & 8
\end{array}\right]
$$

$A B=8 I$

$$
A^{-1}=\frac{1}{8} B\left[\begin{array}{l}
\because A^{-1} A B=8 A^{-1} I \\
B=8 A^{-1}
\end{array}\right]
$$

$$
\begin{aligned}
& A X=C \\
& X=A^{-1} C
\end{aligned}
$$

$$
=\frac{1}{8}\left[\begin{array}{ccc}
-4 & 4 & 4 \\
-7 & 1 & 3 \\
5 & -3 & -1
\end{array}\right]\left[\begin{array}{l}
4 \\
9 \\
1
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
3 \\
-2 \\
-1
\end{array}\right]} \\
& x=3, \quad y=-2, \quad z=-1
\end{aligned}
$$

OR

$$
\begin{gathered}
{\left[\begin{array}{rrr}
1 & -1 & 2 \\
0 & 2 & -3 \\
3 & -2 & 4
\end{array}\right]\left[\begin{array}{lll}
-2 & 0 & 1 \\
9 & 2 & -3 \\
6 & 1 & -2
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
{\left[\begin{array}{lll}
1 & -1 & 2 \\
0 & 2 & -3 \\
3 & -2 & 4
\end{array}\right]^{-1}=\left[\begin{array}{lll}
-2 & 0 & 1 \\
9 & 2 & -3 \\
6 & 1 & -2
\end{array}\right]} \\
{\left[\begin{array}{l}
1 \\
0
\end{array} \begin{array}{rr}
-1 & 2 \\
3 & -2 \\
-2
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]} \\
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{rrr}
1 & -1 & 2 \\
0 & 2 & -3 \\
3 & -2 & 4
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]}
\end{gathered}
$$

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
5 \\
3
\end{array}\right]
$$

13. If a, b, c is in A.P, and then finds the value of

$$
\left|\begin{array}{lll}
x+2 & x+3 & x+2 a \\
x+3 & x+4 & x+2 b \\
x+4 & x+5 & x+2 c
\end{array}\right|
$$

Ans. $R_{1} \rightarrow R_{1}+R_{3}$

$$
\begin{aligned}
& \quad=\left|\begin{array}{ccc}
2 \mathrm{x}+6 & 2 \mathrm{x}+8 & 2 \mathrm{x}+2 \mathrm{a}+2 \mathrm{c} \\
\mathrm{x}+3 & \mathrm{x}+4 & \mathrm{x}+2 \mathrm{~b} \\
\mathrm{x}+4 & \mathrm{x}+5 & \mathrm{x}+2 \mathrm{c}
\end{array}\right| \\
& =\left|\begin{array}{ccr}
2 \mathrm{x}+6 & 2 \mathrm{x}+8 & 2 \mathrm{x}+4 \mathrm{~b} \\
\mathrm{x}+3 & \mathrm{x}+4 & \mathrm{x}+2 \mathrm{~b} \\
\mathrm{x}+4 & \mathrm{x}+5 & \mathrm{x}+2 \mathrm{c}
\end{array}\right| \quad[2 b=a+c]
\end{aligned}
$$

$R_{1} \rightarrow R_{1}-2 R_{2}$

$$
=\left|\begin{array}{ccc}
0 & 0 & 0 \\
x+3 & x+4 & x+2 b \\
x+4 & x+5 & x+2 c
\end{array}\right|
$$

$$
=0
$$

14. $A=\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right]$,

Find the no. a and b such that $A^{2}+a A+b l=0$ Hence find A^{-1}
Ans. $A^{2}=\left[\begin{array}{ll}11 & 8 \\ 4 & 3\end{array}\right]$

$$
A^{2}+a A+b I=\left[\begin{array}{ll}
11 & 8 \\
4 & 3
\end{array}\right]+a\left[\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right]+b\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$$
\begin{gathered}
=\left[\begin{array}{cc}
11+3 \mathrm{a}+\mathrm{b} & 8+2 \mathrm{a} \\
4+\mathrm{a} & 3+\mathrm{a}+\mathrm{b}
\end{array}\right] \\
\text { ATQ }\left[\begin{array}{cc}
11+3 \mathrm{a}+\mathrm{b} & 8+2 \mathrm{a} \\
4+\mathrm{a} & 3+\mathrm{a}+\mathrm{b}
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& a=-4, b=1 \\
& A^{2}-4 A+I=0 \\
& A^{2}-4 A=-I \\
& A A A^{-1}-4 A A^{-1}=-I A^{-1} \\
& A-4 I=-A^{-1} \\
& A^{-1}=4 I-A \\
& =\left[\begin{array}{cc}
1 & -2 \\
-1 & 3
\end{array}\right]
\end{aligned}
$$

15. Find the area of Δ whose vertices are $(3,8)(-4,2)$ and $(5,1)$ Ans.

$$
\begin{array}{r}
\Delta=\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right| \\
=\frac{1}{2}\left|\begin{array}{ccc}
3 & 8 & 1 \\
-4 & 2 & 1 \\
5 & 1 & 1
\end{array}\right| \\
=\frac{1}{2}[3(2-1)-8(-4-5)+1(-4-10)] \\
=\frac{1}{2}[3+72-14]=\frac{61}{2}
\end{array}
$$

16. Evaluate

$$
\Delta=\left[\begin{array}{lcc}
0 & \sin \alpha & -\cos \alpha \\
-\sin \alpha & 0 & \sin \beta \\
\cos \alpha & -\sin \beta & 0
\end{array}\right]
$$

Ans.

$$
\Delta=0\left|\begin{array}{cc}
0 & \sin \beta \\
-\sin \beta & 0
\end{array}\right|-\sin \alpha\left|\begin{array}{cc}
-\sin \alpha & \sin \beta \\
\cos \alpha & 0
\end{array}\right|-\cos \alpha\left|\begin{array}{cc}
-\sin \alpha & 0 \\
\cos \alpha & -\sin \beta
\end{array}\right|
$$

$=0$
17. Solve by matrix method
$x-y+z=4$
$2 x+y-3 z=0$
$x+y+z=2$
Ans.

$$
A=\left[\begin{array}{ccc}
1 & -1 & 1 \\
2 & 1 & -3 \\
1 & 1 & 1
\end{array}\right]
$$

$$
|A|=\left[\begin{array}{rrr}
1 & -1 & 1 \\
2 & 1 & -3 \\
1 & 1 & 1
\end{array}\right]
$$

$=10 \neq 0$

$$
\begin{aligned}
A d J A & =\left[\begin{array}{lll}
4 & 2 & 2 \\
-5 & 0 & 5 \\
1 & -2 & 3
\end{array}\right] \\
A^{-1} & =\frac{1}{|A|}(\operatorname{adJ} A)
\end{aligned}
$$

$$
=\frac{1}{10}\left[\begin{array}{lll}
4 & 2 & 2 \\
-5 & 0 & 5 \\
1 & -2 & 3
\end{array}\right]
$$

System of equation can be written is
$X=A^{-1} B$

$$
\begin{aligned}
& =\frac{1}{10}\left[\begin{array}{lll}
4 & 2 & 2 \\
-5 & 0 & 5 \\
1 & -2 & 3
\end{array}\right]\left[\begin{array}{l}
4 \\
0 \\
2
\end{array}\right] \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
2 \\
-1 \\
1
\end{array}\right],} \\
& x=2, \quad y=-1, \quad z=1
\end{aligned}
$$

18. Show that using properties of det.

$$
\begin{gathered}
\left|\begin{array}{ccc}
1+\mathrm{a} & 1 & 1 \\
1 & 1+\mathrm{b} & 1 \\
1 & 1 & 1+\mathrm{c}
\end{array}\right|=a b c\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \\
=a b c+b c+c a+a b
\end{gathered}
$$

Ans. Taking a, b, c common from R_{1}, R_{2} and $\mathbf{R}_{\mathbf{3}}$

$$
=a b c\left|\begin{array}{lll}
\frac{1}{a}+1 & \frac{1}{a} & \frac{1}{a} \\
\frac{1}{b} & \frac{1}{b}+1 & \frac{1}{b} \\
\frac{1}{c} & \frac{1}{c} & \frac{1}{c}+1
\end{array}\right|
$$

$$
\begin{aligned}
& R_{1} \rightarrow R_{1}+R_{2}+R_{3} \\
& =a b c\left|\begin{array}{ccc}
1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c} & 1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c} & 1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \\
\frac{1}{b} & \frac{1}{b}+1 & \frac{1}{b} \\
\frac{1}{c} & \frac{1}{c} & \frac{1}{c}+1
\end{array}\right| \\
& =a b c\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left|\begin{array}{lll}
1 & 1 & 1 \\
\frac{1}{b} & \frac{1}{b}+1 & \frac{1}{b} \\
\frac{1}{c} & \frac{1}{c} & \frac{1}{c}+1
\end{array}\right| \\
& C_{1} \rightarrow C_{1}-C_{3}, \quad C_{2} \rightarrow C_{2}-C_{3} \\
& =a b c\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left|\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & \frac{1}{b} \\
-1 & -1 & \frac{1}{c}+1
\end{array}\right|
\end{aligned}
$$

Expending along $\mathbf{R}_{\mathbf{1}}$

$$
=a b c\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)[1]
$$

$$
=a b c+b c+a c+b c
$$

19. If x, y, z are different and

$$
\Delta=\left|\begin{array}{ccc}
\mathrm{x} & \mathrm{x}^{2} & 1+\mathrm{x}^{3} \\
y & \mathrm{y}^{2} & 1+\mathrm{y}^{3} \\
z & z^{2} & 1+z^{3}
\end{array}\right|=0
$$

then show that $1+x y z=0$ ans.

$$
\Delta=\left|\begin{array}{ccc}
\mathrm{x} & \mathrm{x}^{2} & 1+\mathrm{x}^{3} \\
\mathrm{y} & \mathrm{y}^{2} & 1+\mathrm{y}^{3} \\
\mathrm{z} & \mathrm{z}^{2} & 1+\mathrm{z}^{3}
\end{array}\right|
$$

Ans:

$$
\begin{aligned}
& \Delta=\left|\begin{array}{lll}
x & x^{2} & 1 \\
\mathrm{y} & \mathrm{y}^{2} & 1 \\
\mathrm{z} & \mathrm{z}^{2} & 1
\end{array}\right|+\Delta=\left|\begin{array}{ccc}
\mathrm{x} & \mathrm{x}^{2} & \mathrm{x}^{3} \\
\mathrm{y} & \mathrm{y}^{2} & \mathrm{y}^{3} \\
\mathrm{z} & \mathrm{z}^{2} & \mathrm{z}^{3}
\end{array}\right| \\
& \\
& =\left|\begin{array}{lll}
1 & \mathrm{x} & \mathrm{x}^{2} \\
1 & \mathrm{y} & \mathrm{y}^{2} \\
1 & \mathrm{z} & \mathrm{z}^{2}
\end{array}\right|+|x y z|\left|\begin{array}{lll}
1 & \mathrm{x} & \mathrm{x}^{2} \\
1 & \mathrm{y} & \mathrm{y}^{2} \\
1 & \mathrm{z} & \mathrm{z}^{2}
\end{array}\right| \\
& \\
& =(1+x y z)\left|\begin{array}{ll}
1 & \mathrm{x} \\
1 & \mathrm{x}^{2} \\
1 & \mathrm{y}^{2} \\
z^{2}
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =(1+x y z)(y-x)(z-x)\left|\begin{array}{ccc}
1 & \mathrm{x} & \mathrm{x}^{2} \\
0 & 1 & \mathrm{y}+x \\
0 & 1 & \mathrm{z}+x
\end{array}\right| \\
& =(1+x y z)(y-x)(z-x)(z-y) \\
& \Delta=0(\text { given })
\end{aligned}
$$

$\mathbf{x}, \mathbf{y}, \mathbf{z}$ all are different

$$
\begin{aligned}
& x-y \neq 0, \quad y-z \neq 0, \quad z-x \neq 0 \\
& \therefore 1+x y z=0
\end{aligned}
$$

20. Find the equation of the line joining $A(1,30$ and $B(0,0)$ using det. Find K if $D(K, 0)$ is a point such then area of $\triangle A B C$ is 3 square unit Ans. Let $P(x, y)$ be any point on $A B$. Then area of $\triangle A B P$ is zero

$$
\frac{1}{2}\left|\begin{array}{lll}
0 & 0 & 1 \\
1 & 3 & 1 \\
\mathrm{x} & \mathrm{y} & 1
\end{array}\right|=0
$$

$y=3 x$
Area $\triangle \mathrm{ABD}=3$ square unit

$$
\begin{aligned}
& \frac{1}{2}\left|\begin{array}{lll}
1 & 3 & 1 \\
0 & 0 & 1 \\
\mathrm{~K} & 0 & 1
\end{array}\right|= \pm 3 \\
& k= \pm 2
\end{aligned}
$$

21. Show that the matrix $A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$ satisfies the equation $\mathbf{A}^{2}-\mathbf{4 A}+\mathbf{I}=\mathbf{0}$. Using this equation, find A^{-1}
Ans.

$$
A^{2}=\left[\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right] \cdot\left[\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right]
$$

$=4\left[\begin{array}{ll}7 & 12 \\ 1 & 7\end{array}\right]$

$$
\begin{gathered}
A^{2}-4 A+I=\left[\begin{array}{ll}
7 & 12 \\
1 & 7
\end{array}\right]-\left[\begin{array}{ll}
8 & 12 \\
4 & 8
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
\\
=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \\
=0
\end{gathered}
$$

$$
\begin{aligned}
& A^{2}-4 A+I=0 \\
& A^{2}-4 A=-I
\end{aligned}
$$

$$
\begin{aligned}
& A A A^{-1}-4 A A^{-1}=-L A^{-1} \\
& A I-4 I=-I A^{-1}\left[\because A A^{-1}=I\right]
\end{aligned}
$$

$$
\begin{aligned}
& A^{-1}=4 I-A \\
& =\left[\begin{array}{lr}
2 & -3 \\
-1 & 2
\end{array}\right]
\end{aligned}
$$

22. Solve by matrix method.
$3 x-2 y+3 z=8$
$2 x+y-z=1$
$4 x-3 y+2 z=4$
Ans. The system of equation be written in the form $A X=B$, whose

$$
A=\left[\begin{array}{rrr}
3 & -2 & 3 \\
2 & 1 & -1 \\
4 & -3 & 2
\end{array}\right] X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] B=\left[\begin{array}{l}
8 \\
1 \\
4
\end{array}\right]
$$

$$
|A|=-17 \neq 0
$$

$$
A^{-1}=\frac{1}{17}\left[\begin{array}{lrr}
-1 & -5 & -1 \\
-8 & -6 & 9 \\
-10 & 1 & 7
\end{array}\right]
$$

$$
X=A^{-1} B
$$

$$
=\frac{1}{-17}\left[\begin{array}{lrr}
-1 & -5 & -1 \\
-8 & -6 & 9 \\
-10 & 1 & 7
\end{array}\right]\left[\begin{array}{l}
8 \\
1 \\
4
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

$$
x=1, \quad y=2, \quad z=3
$$

23. The sum of three no. is 6 . If we multiply third no. by 3 and add second no. to it, we get II. By adding first and third no. we get double of the second no. represent it algebraically and find the no. using matrix method.
Ans. I = x II = y II = z
$x+y+z=6$
$y+3 z=11$
$x+z=2 y$
This system can be written as $A X=B$ whose

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & 3 \\
1 & -2 & 1
\end{array}\right] X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] B=\left[\begin{array}{c}
6 \\
11 \\
0
\end{array}\right]
$$

$|A|=9 \neq 0$

$$
\begin{array}{lll}
A_{11}=7, & A_{12}=3, & A_{13}=-1 \\
A_{21}=-3, & A_{22}=0, & A_{23}=3 \\
A_{31}=2, & A_{32}=-3, & A_{33}=1
\end{array}
$$

$$
\text { aiJ } A=\left[\begin{array}{rrr}
7 & -3 & 2 \\
3 & 0 & -3 \\
-1 & 3 & 1
\end{array}\right]
$$

$$
A^{-1}=\frac{1}{|A|} \text { aiJ } A=\frac{1}{9}\left[\begin{array}{rrr}
7 & -3 & 2 \\
3 & 0 & -3 \\
-1 & 3 & 1
\end{array}\right]
$$

$X=A^{-1} B$

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\frac{1}{9}\left[\begin{array}{ccc}
7 & -3 & 2 \\
3 & 0 & -3 \\
-1 & 3 & 1
\end{array}\right]\left[\begin{array}{c}
6 \\
11 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]} \\
& x=1 \quad y=2, \quad z=3
\end{aligned}
$$

24.

$$
\left|\begin{array}{ccc}
\alpha & \alpha^{2} & \beta-\gamma \\
\beta & \beta^{2} & \gamma+\alpha \\
\gamma & \gamma^{2} & \alpha+\beta
\end{array}\right|=(\beta-\gamma)(\gamma-\alpha)(\alpha-\beta)(\alpha+\beta+\gamma)
$$

Ans.

$$
R_{1} \rightarrow R_{1}-R_{2}
$$

Expending along $\mathbf{R}_{\mathbf{1}}$

$$
\begin{aligned}
& =(\alpha-\gamma)(\beta-\gamma)[-(\alpha-\beta)(\alpha+\beta+\gamma)] \\
& =(\beta-\gamma)(\gamma-\alpha)(\alpha-\beta)(\alpha+\beta+\gamma)
\end{aligned}
$$

25. Find values of K if area of triangle is 35 square. Unit and vertices are (2, -6$),(5,4)$, (K, 4)
Ans.

$$
\begin{aligned}
& R_{1} \rightarrow R_{1}-R_{3}, \quad R_{2} \rightarrow R_{2}-R_{3} \\
& L . H . S=\left|\begin{array}{ccc}
\alpha-\gamma & \alpha^{2}-\gamma^{2} & \beta+\gamma-\alpha-\beta \\
\beta-\gamma & \beta^{2}-\gamma^{2} & \gamma+\alpha-\alpha-\beta \\
\gamma & \gamma^{2} & \alpha+\beta
\end{array}\right| \\
& =\left|\begin{array}{lcc}
\alpha-\gamma & (\alpha+\gamma) & (\gamma-\alpha) \\
\beta-\gamma & (\beta-\gamma)(\beta+\gamma) & \gamma-\beta \\
\gamma & \gamma^{2} & \alpha+\beta
\end{array}\right| \\
& =(\alpha-\gamma)(\beta-\gamma)\left|\begin{array}{ccc}
1 & \alpha+\gamma & -1 \\
1 & \beta+\gamma & 1 \\
\gamma & \gamma^{2} & \alpha+\beta
\end{array}\right| \\
& =(\alpha-\gamma)(\beta-\gamma)\left|\begin{array}{ccc}
0 & \alpha-\beta & 0 \\
1 & \beta+\gamma & -1 \\
\gamma & \gamma^{2} & \alpha+\beta
\end{array}\right|
\end{aligned}
$$

$$
\begin{gathered}
\text { area } \Delta=\left|\begin{array}{lll}
2 & -6 & 1 \\
5 & 4 & 1 \\
\mathrm{~K} & 4 & 1
\end{array}\right| \\
=\frac{1}{2}[2(4-4)+6(5-K)+1(20-4 K)] \\
=\frac{1}{2}[50-10 K] \\
=25-5 K \\
A+\theta \quad 25-5 K=35 \\
K=12
\end{gathered}
$$

26. Using cofactors of elements of second row, evaluate

$$
\Delta=\left|\begin{array}{lll}
5 & 3 & 8 \\
2 & 0 & 1 \\
1 & 2 & 3
\end{array}\right|
$$

Ans.

$$
\begin{aligned}
& \Delta=a_{21} A_{21}+a_{22} A_{22}+a_{23} A_{23} \\
= & -2(9-16)+0(15-8)+1(10-3) \\
= & 14+0-7 \\
= & 7
\end{aligned}
$$

27. If $A=\left[\begin{array}{ll}3 & 1 \\ -1 & 2\end{array}\right]$ Show that $\mathbf{A}^{2}-\mathbf{5 A}+\mathbf{7 I}=\mathbf{0}$. Hence find $\mathbf{A}^{\mathbf{- 1}}$ Ans.

$$
A^{-1}=\frac{1}{7}\left[\begin{array}{cc}
2 & -1 \\
1 & 3
\end{array}\right]
$$

$$
A^{2}-5 A+7 I
$$

$$
\begin{aligned}
& =\left[\begin{array}{ll}
8 & 5 \\
-5 & 2
\end{array}\right]-5\left[\begin{array}{ll}
3 & 1 \\
-1 & 2
\end{array}\right]+7\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
8-15+7 & 5-5+0 \\
-5+50 & 3-10+7
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

Prove.

$$
\begin{aligned}
& \mathbf{A}^{2}-5 \mathbf{A}+7 \mathbf{I}=0 \text { (given) } \\
& \mathbf{A}^{2}-5 \mathbf{A}=-7 \mathrm{I} \\
& \mathbf{A}^{2} \mathbf{A}^{-1}-5 \mathrm{AA}^{-1}=-7 I \mathrm{~A}^{-1} \\
& \mathbf{A A A}^{-1}-5 \mathbf{A A}^{-1}=-7 \mathrm{IA}^{-1} \\
& \mathbf{A}-5 \mathrm{I}=-7 \mathrm{~A}^{-1}\left[A A^{-1}=I\right] \\
& 7 \mathrm{~A}^{-1}=5 \mathrm{I}-\mathbf{A}
\end{aligned}
$$

$$
=5\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{ll}
3 & 1 \\
-1 & 2
\end{array}\right]
$$

$$
=\left[\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right]
$$

$$
A^{-1}=\frac{1}{7}\left[\begin{array}{cc}
2 & -1 \\
1 & 3
\end{array}\right]
$$

28. The cost of 4 kg onion, 3 kg wheat and 2 kg rice is Rs. 60 . The cost of 2 kg onion, 4 kg wheat and 6 kg rice is Rs . 90 . The cost of 6 kg onion 2 kg wheat and 3 kg rice is Rs. 70. Find the cost of each item per kg by matrix method.
Ans. cost of 1 kg onion $=\mathrm{x}$
cost of 1 kg wheat $=y$
cost of 1 kg rise $=\mathbf{z}$
$4 \mathrm{x}+3 \mathrm{y}+2 \mathrm{z}=60$
$2 \mathrm{x}+4 \mathrm{y}+6 \mathrm{z}=90$
$6 x+2 y+3 z=70$

$$
A=\left[\begin{array}{lll}
4 & 3 & 2 \\
2 & 4 & 6 \\
6 & 2 & 3
\end{array}\right] B=\left[\begin{array}{l}
60 \\
90 \\
70
\end{array}\right] X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

$$
|A|=\left|\begin{array}{lll}
4 & 3 & 2 \\
2 & 4 & 6 \\
6 & 2 & 3
\end{array}\right|=50 \neq 0
$$

$$
\text { aiJ } A=\left[\begin{array}{lcr}
0 & -5 & 10 \\
30 & 0 & -20 \\
-20 & 10 & 10
\end{array}\right]
$$

$$
A^{-1}=\frac{1}{|A|}(\text { aiJ } A)=\frac{1}{80}\left[\begin{array}{llr}
0 & -5 & 10 \\
30 & 0 & -20 \\
-20 & 10 & 10
\end{array}\right]
$$

$X=A^{-1} B$

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
5 \\
8 \\
8
\end{array}\right]} \\
& x=5, \quad y=8, \quad z=8
\end{aligned}
$$

