1 Mark Questions

1.Find values of x for which $\begin{vmatrix} 3 & x \\ x & 1 \end{vmatrix} = \begin{vmatrix} 3 & 2 \\ 4 & 1 \end{vmatrix}$. Ans. $(3 - x)^2 = 3 - 8$ $3 - x^2 = 3 - 8$ $-x^2 = -8$ $x = \pm \sqrt{8}$ $x = \pm 2\sqrt{2}$

2. A be a square matrix of order 3 \times 3, there |KA| is equal to

Ans. |KA|=Kⁿ |A| N=3 |KA|=K³ |A|

3. Evaluate

$$\Delta = \begin{vmatrix} 3 & 2 & 3 \\ 2 & 2 & 3 \\ 3 & 2 & 3 \end{vmatrix}$$

Ans.

$$\Delta = 0[C_1 \text{ and } C_3 \text{ identical}]$$

4. Let $\begin{vmatrix} 4 & y \\ x & 1 \end{vmatrix} = \begin{vmatrix} 4 & 2 \\ 4 & 1 \end{vmatrix}$ find all the possible value of x and y if x and y are natural numbers. Ans. 4 - xy = 4 -8 xy = 8of x = 1 x = 4 x = 8 y = 8 y = 1 y = 1 5. Solve

$$x^{2}-x+1 = x+1$$
 $x+1 = x+1$

Ans.
$$(x^2 - x + 1) (x + 1) - (x + 1) (x - 1)$$

= $x^3 - x^2 + x + x^2 - x + 1 - (x^2 - 1)$
= $x^3 + 1 - x^2 + 1$
= $x^3 - x^2 + x^2$

6. Find minors and cofactors of all the elements of the det. $\begin{vmatrix} 1 & -2 \\ 4 & 3 \end{vmatrix}$ Ans.

$$M_{11} = 3, \dots, A_{11} = 3$$

$$M_{12} = 4$$
, $A_{12} = -4 \left[\because Aij = (-1)^{i+J} . MiJ \right]$

$$M_{21} = -2, \qquad A_{21} = 2$$

 $M_{22} = 1, \qquad A_{22} = 1$

7. Evaluate

102	18	36
1 ///// 17	3	36 4 6
17	3	6

Ans.

$$= \begin{vmatrix} 102 & 18 & 36 \\ 1 & 3 & 4 \\ 17 & 3 & 6 \end{vmatrix} = \begin{vmatrix} 6 \times 17 & 6 \times 3 & 6 \times 6 \\ 1 & 3 & 4 \\ 17 & 3 & 6 \end{vmatrix}$$

$$= \begin{vmatrix} 17 & 3 & 6 \\ 1 & 3 & 4 \\ 17 & 3 & 6 \end{vmatrix} = 0$$

[R₁ and R₃ are identical]

8. Show that

$\sin 10^{\circ}$	-cos10°	_ 1
sin80°	cos80°	-1

Ans.

 $= \sin 10.\cos 80 + \cos 10\sin 80$

$$= \sin(10+90)$$
$$= [\because \sin A \cos B + \cos A \sin B = \sin(A+B)]$$

= sin 90 = 1

```
9. Find value of x, if \begin{vmatrix} 2 & 4 \\ 5 & 1 \end{vmatrix} = \begin{vmatrix} 2x & 4 \\ 6 & x \end{vmatrix}

Ans. (2 - 20) = (2x^2 - 24)

-18 = 2 \times 2 - 24

-2x^2 = -24 + 18

-2x^2 = 6

2x^2 = 6

x^2 = 3

x = \pm \sqrt{3}
```

10. Find adj A for
$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$$

Ans. adJ A = $\begin{bmatrix} 4 & -3 \\ -1 & 2 \end{bmatrix}$
 $\begin{bmatrix} \because & A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$
change sign inter-change

11. Without expanding, prove that

$$\Delta = \begin{vmatrix} x+y & y+z & z+x \\ z & x & y \\ 1 & 1 & 1 \end{vmatrix} = 0$$

Ans. $R_1 \rightarrow R_1 + R_2$

$$\Delta = \begin{vmatrix} x + y + z & x + y + z & x + y + z \\ z & x & y \\ 1 & 1 & 1 \end{vmatrix}$$

$$\Delta = (x+y+z) \begin{vmatrix} 1 & 1 & 1 \\ z & x & y \\ 1 & 1 & 1 \end{vmatrix}$$

$$= 0 \begin{bmatrix} \because R_1 \text{ and } R_3 \\ area \text{ identical} \end{bmatrix}$$

12. If matrix

$$A = \begin{bmatrix} 1 & -2 & 3 \\ 1 & 2 & 1 \\ x & 2 & -3 \end{bmatrix}$$

is singular, find x.

Ans. For singular |A| = 0 1(-6 -2) + 2(-3 -x) + 3 (2 -2x) = 0 -8 - 6 - 2x + 6 - 6x = 0 -8x = + 8 x = -1

13. Show that, using properties if det.

$$\begin{vmatrix} 1 & x & x^{2} \\ x^{2} & 1 & x \\ x & x^{2} & 1 \end{vmatrix} = (1 - x^{3})^{2}$$

Ans.

$$C_1 \rightarrow C_1 + C_2 + C_3$$

$$= \begin{vmatrix} 1+x+x^2 & x & x^2 \\ 1+x+x^2 & 1 & x \\ 1+x+x^2 & x^2 & 1 \end{vmatrix}$$

$$= (1 + x + x^{2}) \begin{vmatrix} 1 & x & x^{2} \\ 1 & 1 & x \\ 1 & x^{2} & 1 \end{vmatrix}$$

$$R_1 \rightarrow R_1 - R_3$$
 $R_2 \rightarrow R_2 - R_3$

$$= (1+x+x^{2}) \begin{vmatrix} 0 & x-x^{2} & x^{2}-1 \\ 0 & 1-x^{2} & x-1 \\ 1 & x^{2} & 1 \end{vmatrix}$$

$$= (1+x+x^{2}) \begin{vmatrix} 0 & x(1-x) & -(1-x)(1+x) \\ 0 & (1-x)(1+x) & -(1-x) \\ 1 & x^{2} & 1 \end{vmatrix}$$

Taking (1 - x) common from R_1 and R_2

$$= (1+x+x^{2})(1-x)^{2} \begin{vmatrix} 0 & x & -(1+x) \\ 0 & 1+x & -1 \\ 1 & x^{2} & 1 \end{vmatrix}$$

Expending along C¹

$$= (1+x+x^{2})(1-x)^{2}[-x+(1+x)^{2}]$$

= $(1+x+x^{2})(1-x)^{2}(-x+1+x^{2}+2x)$

$$= (1-x)(1+x+x^{2})(1-x)(1+x+x^{2})$$
$$= (1-x^{3})^{2}$$

14. lf

$$\begin{vmatrix} \mathbf{x} & 2 \\ 18 & \mathbf{x} \end{vmatrix} = \begin{vmatrix} 6 & 2 \\ 18 & 6 \end{vmatrix},$$

than x is equal to Ans. $x^2 - 36 = 36 - 36$ $x^2 = 36$ $x = \pm \sqrt{6}$

15. $A = \begin{bmatrix} 1 & 2 \\ 1 & 4 \end{bmatrix}$ is singular or not **Ans.** $|A| = \begin{vmatrix} 1 & 1 \\ 4 & 8 \end{vmatrix}$ = 8 - 8 = 0Hence A is singular

16. Without expanding, prove that

Ans.

$$\frac{1}{abc}\begin{vmatrix} a^2 & a^3 & abc \\ b^2 & b^3 & abc \\ c^2 & c^3 & abc \end{vmatrix} = \begin{vmatrix} 1 & a^2 & a^3 \\ 1 & b^2 & b^3 \\ 1 & c^2 & c^3 \end{vmatrix}$$

$$\frac{abc}{abc} = \begin{vmatrix} a^2 & a^3 & 1 \\ b^2 & b^3 & 1 \\ c^2 & c^3 & 1 \end{vmatrix} = \begin{vmatrix} 1 & a^2 & a^3 \\ 1 & b^2 & b^3 \\ 1 & c^2 & c^3 \end{vmatrix}$$

$$\begin{vmatrix} & a^{2} & a^{3} \\ 1 & b^{2} & b^{3} \\ 1 & c^{2} & c^{3} \end{vmatrix} = \begin{vmatrix} 1 & a^{2} & a^{3} \\ 1 & b^{2} & b^{3} \\ 1 & c^{2} & c^{3} \end{vmatrix} \begin{bmatrix} C_{1} \leftrightarrow C_{3} \\ C_{2} \leftrightarrow C_{3} \end{bmatrix}$$

Hence Prove

17.

$$A = \begin{vmatrix} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7 \end{vmatrix},$$

Verify that det A = det (A')Ans.

$$|A| = 2(0-20) + 3(-42-4) + 5(30-0)$$

= -28

Hence prove.

18. If then show that Ans.

Hence Prove

19. A be a non – singular square matrix of order 3 – 3. Then – is equal to Ans. N=3

20. If A is an invertible matrix of order 2, then det is equal (A⁻¹) to Ans. A is invertible $AA^{-1} = 0$ det $(AA^{-1}) = det (I)$ det A.(det $A^{-1}) = det (0)$ det $A^{-1} = 0$

4 Marks Questions

1. Show that, using properties of determinants.

OR

Ans. Multiplying $R_1 R_2$ and R_3 by a, b, c respectively

Taking a, b, c, common from c_1 , c_2 , and c_3

Expending along R_1

OR {solve it} {hint : } Taking common 3 (a+b) from C₁

2.

Ans.

$$R_1 \rightarrow xR_1, \quad R_2 \rightarrow yR_2, \quad R_3 \rightarrow ZR_3$$

$$\Delta = \frac{1}{xyz} \begin{vmatrix} x(y+z)^2 & x^2y & x^2z \\ xy^2 & y(x+z)^2 & y^2z \\ xz^2 & yz^2 & z(x+y)^2 \end{vmatrix}$$

$$\Delta = \frac{xyz}{xyz} \begin{vmatrix} (y+z)^2 & x^2 & x^2 \\ y^2 & (x+z)^2 & y^2 \\ z^2 & z^2 & (x+y)^2 \end{vmatrix}$$

$$C_2 \rightarrow C_2 - C_1, \quad | \quad | \quad C_3 \rightarrow C_3 - C_4$$

$$\Delta = \begin{vmatrix} (y+z)^2 & x^2 \cdot (y+z)^2 & x^2 \cdot (y+z)^2 \\ y^2 & (x+z)^2 \cdot y^2 & 0 \\ z^2 & 0 & (x+y)^2 \cdot z^2 \end{vmatrix}$$

Taking (x + y + z) common from c_2 and C_3

$$\Delta = (x + y + z)^{2} \begin{vmatrix} (y+z)^{2} & x-y-z & x-y-z \\ y^{2} & x+z-y & 0 \\ z^{2} & 0 & x+y-z \end{vmatrix}$$

$$\begin{array}{c|c} R_1 \to R_1 - (R_2 + R_3) \\ \Delta = (x + y + z)^2 \begin{vmatrix} 2yz & -2z & -2y \\ y^2 & x + z - y & 0 \\ z^2 & 0 & x + y - z \end{vmatrix}$$

$$C_2 \rightarrow C_2 + \frac{1}{y}C_1$$
 and $C_3 \rightarrow C_3 + \frac{1}{z}C_1$

$$\Delta = (x + y + z)^{2} \begin{vmatrix} 2yz & 0 & 0 \\ y^{2} & x + z & \frac{y^{2}}{z} \\ z^{2} & \frac{z^{2}}{y} & x + y \end{vmatrix}$$

Expending along R₁

$$= (x+y+z)^3(2xyz)$$

3. Find the equation of line joining (3, 1) and (9, 3) using determinants.

Ans. Let (x, y) be any point on the line containing (3, 1) and (9, 3)

$$\begin{vmatrix} x & y & 1 \\ 3 & 1 & 1 \\ 9 & 3 & 1 \end{vmatrix} = 0$$

x-3y=0

4. If

$$A = \begin{bmatrix} 2 & 3 \\ 1 & -4 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}$$

then verify that $(AB)^{-1} = B^{-1} A^{-1}$ Ans.

$$AB = \begin{bmatrix} 2 & 3\\ 1 & -4 \end{bmatrix} \begin{bmatrix} 1 & -2\\ -1 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} -1 & 5\\ 5 & -14 \end{bmatrix}$$
$$|AB| = -11 \neq 0$$
$$(AB)^{-1} = \frac{1}{11} adj (AB)$$

$$(AB)^{-1} = \frac{-1}{11} adj(AB)^{-1} = \frac{-1}{11} \begin{bmatrix} -14 & -5\\ -5 & -1 \end{bmatrix}$$

$$= \frac{1}{11} \begin{bmatrix} 14 & 5\\ 5 & 1 \end{bmatrix}$$
$$|A| = -11 \neq 0, \quad |B| = 1 \neq 0$$

$$A^{-1} = \frac{-1}{11} \begin{bmatrix} -4 & -3 \\ -1 & 2 \end{bmatrix}$$
$$B^{-1} = \frac{1}{1} \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$$

$$B^{-1}A^{-1} = \frac{-1}{11} \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -4 & -3 \\ -1 & 2 \end{bmatrix}$$

$$=\frac{1}{-11}\begin{bmatrix} -14 & -5\\ -5 & -1 \end{bmatrix}$$

5. Using cofactors of elements of third column, evaluate

$$\Delta = \begin{vmatrix} 1 & x & yz \\ 1 & y & zx \\ 1 & z & xy \end{vmatrix}$$

Ans.

$$\Delta = a_{13}A_{13} + a_{23}A_{23} + a_{33}A_{33}$$

$$= yz(z-y) + zx(x-z) + xy(y-x)$$

= $yz^{2} - y^{2}z + zx^{2} - z^{2}x + xy^{2} - x^{2}y$

$$= zx^{2} - x^{2}y + xy^{2} - z^{2}x + yz^{2} - y^{2}z$$

= $x^{2}(z - y) + x(y^{2} - z^{2}) + yz(z - y)$

$$= (z - y)[x^{2} + x(z + y) + yz]$$

= $(z - y)[x^{2} - xz - xy + yz]$

$$= (z - y[x(x - y) - z(x - y)]$$

= (z - y)[(x - y)(x - z)]

$$= (z-y)(x-y)(x-z)$$

$$A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}$$

find A⁻¹, using A⁻¹ solve the system of equations 2x - 3y + 5z = 113x + 2y - 4z = -5x + y -2z = -3Ans.

$$|A| = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}$$

 $(A) = -1 \neq 0$ $A^{-1}exists$

$$A^{-1} = \frac{1}{|A|} (adjA)$$

$$=\frac{1}{-1}\begin{bmatrix} 0 & -1 & 2\\ 2 & -9 & 23\\ 1 & -5 & 13 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13 \end{bmatrix}$$

The given system of equation can be written is Ax = B, $X = A^{-1}B$

$$\begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 5 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 11 \\ -5 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 5 & -2 \end{bmatrix}^{-1} \begin{bmatrix} 11 \\ -5 \\ 3 \end{bmatrix}^{-1} \begin{bmatrix} 11 \\ -5 \\ 3 \end{bmatrix}^{-1} = \begin{bmatrix} 0 & -1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13 \end{bmatrix} \begin{bmatrix} 11 \\ -5 \\ 3 \end{bmatrix}$$
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$x = 1$$
$$y = 2$$
$$z = 3$$

7. Show that, using properties of determinants.

$$\begin{vmatrix} 1+a^{2}-b^{2} & 2ab & -2b \\ 2ab & 1-a^{2}+b^{2} & 2a \\ 2b & -2a & 1-a^{2}-b^{2} \end{vmatrix} = (1+a^{2}+b^{2})^{3}$$

Ans. $R_1 \rightarrow R_1 + b.R_3$

$$L.H.S = \begin{cases} 1+a^2+b^2 & 0 & -b(1+a^2+b^2) \\ 2ab & 1-a^2+b^2 & 2a \\ 2b & -2a & 1-a^2-b^2 \end{cases}$$

Taking common $(1 + a^2 + b^2)$ from R₁

$$= 1 + a^{2} + b^{2}$$

$$\begin{vmatrix} 1 & 0 & -b \\ 2ab & 1 - a^{2} + b^{2} & 2a \\ 2b & -2a & 1 - a^{2} - b^{2} \end{vmatrix}$$

 $R_1 \rightarrow R_1 - a.R_3$

$$=1+a^{2}+b^{2} \begin{vmatrix} 1 & 0 & -b \\ 0 & 1+a^{2}+b^{2} & a(1+a^{2}+b^{2}) \\ 2b & -2a & 1-a^{2}-b^{2} \end{vmatrix}$$

Taking $(1 + a^2 + b^2)$ common from R_2

$$= 1 + a^{2} + b^{2} \begin{vmatrix} 1 & 0 & -b \\ 0 & 1 & a \\ 2b & -2a & 1 - a^{2} - b^{2} \end{vmatrix}$$

Expending entry R₁

$$= (1 + a^{2} + b^{2})^{2} [1(1 - a^{2} - b^{2} + 2a^{2}) - b(-2b)]$$

= $(1 + a^{2} + b^{2})^{2} [1 + a^{2} - b^{2} + 2b^{2}]$

$$= (1 + a^{2} + b^{2})^{2}(1 + a^{2} + b^{2})$$
$$= (1 + a^{2} + b^{2})^{3}$$

8.

$$\Delta = \begin{vmatrix} a+bx & c+dx & p+qx \\ ax+b & cx+d & px+q \\ u & v & w \end{vmatrix} = \begin{pmatrix} 1-x^2 \end{pmatrix} \begin{vmatrix} a & c & p \\ b & d & q \\ u & v & w \end{vmatrix}$$

Ans.

$$L.H.S = R_1 \to R_1 - xR_2$$

$$\Delta = \begin{vmatrix} a(1-x^{2}) & c(1-x^{2}) & p(1-x^{2}) \\ ax+b & cx+d & bx+q \\ u & v & w \end{vmatrix}$$

$$\Delta = (1-x^2) \begin{vmatrix} a & c & p \\ ax+b & cx+d & bx+q \\ u & v & w \end{vmatrix}$$

 $R_2 \rightarrow R_2 - xR_1$

$$\Delta = (1-x^2) \begin{vmatrix} a & c & p \\ b & d & q \\ u & v & w \end{vmatrix}$$

9.

Verify that

 $a_{11}A_{31} + a_{12}A_{32} + a_{13}A_{33} = 0$

Ans.

$$a_{11} = 2$$
, $a_{12} = -3$, $a_{13} = 5$

$$A_{31} = -12$$
, $A_{32} = 22$, $A_{33} = 18$

$$L.H.S = a_{11}A_{31} + a_{12}A_{32} + a_{13}A_{33}$$

10.If $A = \begin{bmatrix} 3 & -4 \\ -1 & 2 \end{bmatrix}$, find matrix B such that AB = I Ans. $|A| = 2 \neq 0$ Therefore A⁻¹ exists AB = I A⁻¹ AB = A⁻¹I B = A⁻¹

$$adj A = \begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix}$$

$$A^{-1} = \frac{1}{|A|} (adjA)$$

 $=\frac{1}{2}\begin{bmatrix}2&4\\1&3\end{bmatrix}$ $=\begin{bmatrix}1&2\\\frac{1}{2}&\frac{3}{2}\end{bmatrix}$ Hence $B = \begin{bmatrix}1&2\\\frac{1}{2}&\frac{3}{2}\end{bmatrix}$

11. Using matrices solve the following system of equation

 $\frac{2}{x} + \frac{3}{y} + \frac{10}{z} = 4$ $\frac{4}{x} - \frac{6}{y} + \frac{5}{z} = 1$

$$\frac{6}{x} + \frac{9}{y} + \frac{-20}{z} = 2$$

Ans. Let

$$\frac{1}{x} = 4$$
, $\frac{1}{y} = v$, $\frac{1}{z} = w$

24 + 3v + 10v = 4 44 - 64 + 5w = 1 64 + 9v - 20w = 2

$$A = \begin{bmatrix} 2 & 3 & 10 \\ 4 & -6 & 5 \\ 6 & 9 & -20 \end{bmatrix} \quad y = \begin{bmatrix} y \\ v \\ w \end{bmatrix} \quad B = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$$

 $|A| = 1200 \neq 0$

$$aiJA = \begin{bmatrix} 75 & 150 & 75 \\ 110 & -100 & 30 \\ 72 & 0 & -24 \end{bmatrix}$$

$$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{1200} \begin{bmatrix} 75 & 150 & 75\\ 110 & -100 & 30\\ 72 & 0 & -24 \end{bmatrix}$$

 $y = A^{-1}B$

$$=\frac{1}{1200}\begin{bmatrix}600\\400\\240\end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{2} \\ \frac{1}{3} \\ \frac{1}{5} \end{bmatrix}$$

$$\begin{bmatrix} y \\ v \\ v \\ w \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{3} \\ \frac{1}{5} \end{bmatrix}$$

$$u = \frac{1}{2}, \qquad v = \frac{1}{3}, \qquad w = \frac{1}{5}$$
$$\frac{1}{x} = \frac{1}{2}, \qquad \frac{1}{y} = \frac{1}{3}, \qquad \frac{1}{z} = \frac{1}{5}$$

x = 2, y = 3 z = 5

12.Given

$$A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix} and B = \begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix}$$

find AB and use this result in solving the following system of equation.

$$x-y+z=4$$
$$x-2y-2z=9$$
$$2x+y+3z=1$$

OR Use product

[1	-1	2]	-2	0	1
0	2	2 -3 4	9	2	1 -3 -2
3	-2	4	6	1	-2

To solve the system of equations.

x - y + 2z = 1 2y - 3z = 1 3x - 2y + 4z = 2Ans. x - y + z = 4 x - 2y - 2z = 9 2x + y + 3z = 1Let

$$A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix} \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \quad C = \begin{bmatrix} 4 \\ 9 \\ 1 \end{bmatrix}$$

$$AX = C$$

$$AB = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} 8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8 \end{bmatrix}$$

AB = 8I

$$A^{-1} = \frac{1}{8}B \begin{bmatrix} \because A^{-1}AB = 8A^{-1}I \\ B = 8A^{-1} \end{bmatrix}$$

AX = C $X = A^{-1}C$

$$=\frac{1}{8}\begin{bmatrix}-4 & 4 & 4\\-7 & 1 & 3\\5 & -3 & -1\end{bmatrix}\begin{bmatrix}4\\9\\1\end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \\ -1 \end{bmatrix}$$

$$x = 3$$
, $y = -2$, $z = -1$

OR

$\begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}$	$ \begin{bmatrix} -1 & 2 \\ 2 & -3 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} -2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} $	0 0 1]
	$\begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}^{-1} = \begin{bmatrix} -2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2 \end{bmatrix}$	
	$\begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$	
	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}^{-1} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$	
	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 5 \\ 3 \end{bmatrix}$	

13. If a, b, c is in A.P, and then finds the value of

Ans. $R_1 \rightarrow R_1 + R_3$

$$= \begin{vmatrix} 2x+6 & 2x+8 & 2x+2a+2c \\ x+3 & x+4 & x+2b \\ x+4 & x+5 & x+2c \end{vmatrix}$$

$$= \begin{vmatrix} 2x+6 & 2x+8 & 2x+4b \\ x+3 & x+4 & x+2b \\ x+4 & x+5 & x+2c \end{vmatrix} [2b = a+c]$$

 $R_1 \rightarrow R_1 - 2R_2$

$$= \begin{vmatrix} 0 & 0 & 0 \\ x+3 & x+4 & x+2b \\ x+4 & x+5 & x+2c \end{vmatrix}$$

= 0

14.
$$A = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$$

Find the no. a and b such that $A^2 + aA + bI = 0$ Hence find A^{-1}
Ans.
$$A^2 = \begin{bmatrix} 11 & 8 \\ 4 & 3 \end{bmatrix}$$
$$A^2 + aA + bI = \begin{bmatrix} 11 & 8 \\ 4 & 3 \end{bmatrix} + a\begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} + b\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$=\begin{bmatrix}11+3a+b & 8+2a\\4+a & 3+a+b\end{bmatrix}$$

$$ATQ \begin{bmatrix} 11+3a+b & 8+2a \\ 4+a & 3+a+b \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

a = -4, b =1 A² - 4A + I = 0 A² - 4A = -I AAA⁻¹ - 4AA⁻¹ = -IA⁻¹ A - 4I = -A⁻¹ A⁻¹ = 4I - A = $\begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}$

15. Find the area of $\ \Delta$ whose vertices are (3, 8) (-4, 2) and (5, 1) Ans.

$$\Delta = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$
$$= \frac{1}{2} \begin{vmatrix} 3 & 8 & 1 \\ -4 & 2 & 1 \\ 5 & 1 & 1 \end{vmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} 3(2-1) - 8(-4-5) + 1(-4-10) \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} 3+72 - 14 \end{bmatrix} = \frac{61}{2}$$

16. Evaluate

$$\Delta = \begin{bmatrix} 0 & \sin\alpha & -\cos\alpha \\ -\sin\alpha & 0 & \sin\beta \\ \cos\alpha & -\sin\beta & 0 \end{bmatrix}$$

Ans.

$$\Delta = 0 \begin{vmatrix} 0 & \sin \beta \\ -\sin \beta & 0 \end{vmatrix} - \sin \alpha \begin{vmatrix} -\sin \alpha & \sin \beta \\ \cos \alpha & 0 \end{vmatrix} - \cos \alpha \begin{vmatrix} -\sin \alpha & 0 \\ \cos \alpha & -\sin \beta \end{vmatrix}$$

= 0

17. Solve by matrix method x - y + z = 4 2x + y - 3 z = 0 x + y + z = 2 Ans.

$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$$

$$|A| = \begin{bmatrix} 1 & -1 & 1 \\ 2 & -1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$$

=10 ≠ 0

$$AdJ \ A = \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{bmatrix}$$

$$A^{-1} = \frac{1}{|A|} (adJ A)$$

$$=\frac{1}{10}\begin{bmatrix}4&2&2\\-5&0&5\\1&-2&3\end{bmatrix}$$

System of equation can be written is

 $X=A^{-1}B$

$$= \frac{1}{10} \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 0 \\ 2 \end{bmatrix}$$
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix},$$

$$x = 2$$
, $y = -1$, $z = 1$

18. Show that using properties of det.

$$\begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{vmatrix} = abc \left(1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)$$

Ans. Taking a, b, c common from R_1 , R_2 and R_3

$$= abc \begin{vmatrix} \frac{1}{a} + 1 & \frac{1}{a} & \frac{1}{a} \\ \frac{1}{b} & \frac{1}{b} + 1 & \frac{1}{b} \\ \frac{1}{c} & \frac{1}{c} & \frac{1}{c} + 1 \end{vmatrix}$$

$$R_1 \rightarrow R_1 + R_2 + R_3$$

$$= abc \begin{vmatrix} 1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c} & 1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c} & 1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \\ \frac{1}{b} & \frac{1}{b} + 1 & \frac{1}{b} \\ \frac{1}{c} & \frac{1}{c} & \frac{1}{c} + 1 \end{vmatrix}$$

$$= abc \left(1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right) \begin{vmatrix} 1 & 1 & 1 \\ \frac{1}{b} & \frac{1}{b} + 1 & \frac{1}{b} \\ \frac{1}{c} & \frac{1}{c} & \frac{1}{c} + 1 \end{vmatrix}$$

$$C_1 \to C_1 - C_3, \qquad C_2 \to C_2 - C_3$$

$$= abc \left(1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right) \begin{vmatrix} 0 & 0 & 1 \\ 0 & 1 & \frac{1}{b} \\ -1 & -1 & \frac{1}{c} + 1 \end{vmatrix}$$

Expending along R₁

$$= abc \left(1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) [1]$$

= abc + bc + ac + bc

$$\Delta = \begin{vmatrix} x & x^2 & 1+x^3 \\ y & y^2 & 1+y^3 \\ z & z^2 & 1+z^3 \end{vmatrix} = 0$$

then show that 1 + xyz = 0 ans.

$$\Delta = \begin{vmatrix} x & x^2 & 1+x^3 \\ y & y^2 & 1+y^3 \\ z & z^2 & 1+z^3 \end{vmatrix}$$

Ans:

$$\Delta = \begin{vmatrix} x & x^2 & 1 \\ y & y^2 & 1 \\ z & z^2 & 1 \end{vmatrix} + \Delta = \begin{vmatrix} x & x^2 & x^3 \\ y & y^2 & y^3 \\ z & z^2 & z^3 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2} \end{vmatrix} + \begin{vmatrix} xyz \\ 1 & y & y^{2} \\ 1 & z & z^{2} \end{vmatrix}$$

$$= (1 + xyz) \begin{vmatrix} 1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2} \end{vmatrix}$$

$$= (1 + xyz) \begin{vmatrix} 1 & x & x^{2} \\ 0 & y-x & y^{2} - x^{2} \\ 0 & z-x & z^{2} - x^{2} \end{vmatrix} \begin{bmatrix} R_{2} \rightarrow R_{2} - R_{1} \\ R_{3} \rightarrow R_{3} - R_{1} \end{bmatrix}$$

$$= (1 + xyz)(y - x)(z - x) \begin{vmatrix} 1 & x & x^{2} \\ 0 & 1 & y + x \\ 0 & 1 & z + x \end{vmatrix}$$

$$= (1 + xyz)(y - x)(z - x)(z - y)$$

$$\Delta = 0(given)$$

x, y, z all are different

$$x - y \neq 0$$
, $y - z \neq 0$, $z - x \neq 0$
 $\therefore 1 + xyz = 0$

20. Find the equation of the line joining A (1, 30 and B (0, 0) using det. Find K if D (K, 0) is a point such then area of \triangle ABC is 3 square unit

Ans. Let P (x, y) be any point on AB. Then area of Λ ABP is zero

$$\frac{1}{2} \begin{vmatrix} 0 & 0 & 1 \\ 1 & 3 & 1 \\ x & y & 1 \end{vmatrix} = 0$$

y = 3xArea \triangle ABD =3 square unit

$$\frac{1}{2} \begin{vmatrix} 1 & 3 & 1 \\ 0 & 0 & 1 \\ K & 0 & 1 \end{vmatrix} = \pm 3$$

k = \pm 2

21. Show that the matrix $A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ satisfies the equation $A^2 - 4A + I = 0$. Using this equation, find A^{-1} Ans.

$$= 4\begin{bmatrix} 7 & 12\\ 1 & 7 \end{bmatrix}$$

$$A^{2} - 4A + I = \begin{bmatrix} 7 & 12\\ 1 & 7 \end{bmatrix} - \begin{bmatrix} 8 & 12\\ 4 & 8 \end{bmatrix} + \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0\\ 0 & 0 \end{bmatrix}$$

$$= 0$$

$$A^{2} - 4A + I = 0$$

$$A^{2} - 4A = -I$$

$$AAA^{-1} - 4AA^{-1} = -IA^{-1}$$

22. Solve by matrix method.

$$3x - 2y + 3z = 8$$

 $2x + y - z = 1$
 $4x - 3y + 2z = 4$
Ans. The system of equation be written in the form AX = B, whose

$$A = \begin{bmatrix} 3 & -2 & 3 \\ 2 & 1 & -1 \\ 4 & -3 & 2 \end{bmatrix} X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} B = \begin{bmatrix} 8 \\ 1 \\ 4 \end{bmatrix}$$

 $AI-4I=-IA^{-1}\Big[\because AA^{-1}=I\Big]$

 $A^{-1} = 4I - A$

 $=\begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$

 $|A| = -17 \neq 0$

$$A^{-1} = \frac{1}{17} \begin{bmatrix} -1 & -5 & -1 \\ -8 & -6 & 9 \\ -10 & 1 & 7 \end{bmatrix}$$

 $X = A^{-1}B$

$$= \frac{1}{-17} \begin{bmatrix} -1 & -5 & -1 \\ -8 & -6 & 9 \\ -10 & 1 & 7 \end{bmatrix} \begin{bmatrix} 8 \\ 1 \\ 4 \end{bmatrix}$$
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$x = 1, \quad y = 2, \quad z = 3$$

23. The sum of three no. is 6. If we multiply third no. by 3 and add second no. to it, we get II. By adding first and third no. we get double of the second no. represent it algebraically and find the no. using matrix method.

Ans. I = x II = y II = z x + y + z = 6 y + 3z = 11 x + z = 2yThis system can be written as AX = B whose

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 1 & -2 & 1 \end{bmatrix} X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} B = \begin{bmatrix} 6 \\ 11 \\ 0 \end{bmatrix}$$

 $|A| = 9 \neq 0$

$$aiJ A = \begin{bmatrix} 7 & -3 & 2 \\ 3 & 0 & -3 \\ -1 & 3 & 1 \end{bmatrix}$$

$$A^{-1} = \frac{1}{|A|} aiJ A = \frac{1}{9} \begin{bmatrix} 7 & -3 & 2\\ 3 & 0 & -3\\ -1 & 3 & 1 \end{bmatrix}$$

 $X = A^{-1}B$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 7 & -3 & 2 \\ 3 & 0 & -3 \\ -1 & 3 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 11 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\begin{vmatrix} y \\ z \end{vmatrix} = \begin{vmatrix} 2 \\ 3 \end{vmatrix}$$

x = 1, y = 2, z = 3

24.

$$\begin{vmatrix} \alpha & \alpha^2 & \beta - \gamma \\ \beta & \beta^2 & \gamma + \alpha \\ \gamma & \gamma^2 & \alpha + \beta \end{vmatrix} = (\beta - \gamma)(\gamma - \alpha)(\alpha - \beta)(\alpha + \beta + \gamma)$$

$$R_1 \to R_1 - R_3, \qquad R_2 \to R_2 - R_3$$

$$L.H.S = \begin{vmatrix} \alpha - \gamma & \alpha^2 - \gamma^2 & \beta + \gamma - \alpha - \beta \\ \beta - \gamma & \beta^2 - \gamma^2 & \gamma + \alpha - \alpha - \beta \\ \gamma & \gamma^2 & \alpha + \beta \end{vmatrix}$$

$$= \begin{vmatrix} \alpha - \gamma & (\alpha + \gamma) & (\gamma - \alpha) \\ \beta - \gamma & (\beta - \gamma)(\beta + \gamma) & \gamma - \beta \\ \gamma & \gamma^{2} & \alpha + \beta \end{vmatrix}$$

$$= (\alpha - \gamma)(\beta - \gamma) \begin{vmatrix} 1 & \alpha + \gamma & -1 \\ 1 & \beta + \gamma & 1 \\ \gamma & \gamma^2 & \alpha + \beta \end{vmatrix}$$

$$R_1 \rightarrow R_1 - R_2$$

Ans.

$$= (\alpha - \gamma)(\beta - \gamma) \begin{vmatrix} 0 & \alpha - \beta & 0 \\ 1 & \beta + \gamma & -1 \\ \gamma & \gamma^2 & \alpha + \beta \end{vmatrix}$$

Expending along R₁

$$= (\alpha - \gamma)(\beta - \gamma) [-(\alpha - \beta)(\alpha + \beta + \gamma)]$$
$$= (\beta - \gamma)(\gamma - \alpha)(\alpha - \beta)(\alpha + \beta + \gamma)$$

25. Find values of K if area of triangle is 35 square. Unit and vertices are (2, -6), (5, 4), (K, 4)

Ans.

$$area \ \Delta = \begin{vmatrix} 2 & -6 & 1 \\ 5 & 4 & 1 \\ K & 4 & 1 \end{vmatrix}$$

$$=\frac{1}{2} \Big[2(4-4) + 6(5-K) + 1(20-4K) \Big]$$

$$= \frac{1}{2} [50 - 10K]$$

= 25 - 5K

$$A + \theta \quad 25 - 5K = 35$$
$$K = 12$$

26. Using cofactors of elements of second row, evaluate

$$\Delta = \begin{vmatrix} 5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3 \end{vmatrix}$$

Ans.

$$\Delta = a_{21}A_{21} + a_{22}A_{22} + a_{23}A_{23}$$

$$= -2(9-16) + 0(15-8) + 1(10-3)$$

= 14 + 0 - 7
= 7

27. If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ Show that $A^2 - 5A + 7I = 0$. Hence find A^{-1} Ans.

$$A^{-1} = \frac{1}{7} \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$$

$$A^{2}-5A+7I$$

$$= \begin{bmatrix} 8 & 5 \\ -5 & 2 \end{bmatrix} - 5\begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} + 7\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 8-15+7 & 5-5+0 \\ -5+50 & 3-10+7 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
Prove.
$$A^{2} - 5A + 7I = 0 \text{ (given)}$$

 $A^{2} - 5A + 7I = 0 \text{ (given)}$ $A^{2} - 5A = -7I$ $A^{2}A^{-1} - 5AA^{-1} = -7IA^{-1}$ $AAA^{-1} - 5AA^{-1} = -7IA^{-1}$ $A - 5I = -7A^{-1} \left[AA^{-1} = I\right]$ $7A^{-1} = 5I - A$

= 5	1	0]	[3	1]
= 5	0	1	-		2

 $= \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$

28. The cost of 4kg onion, 3kg wheat and 2kg rice is Rs. 60. The cost of 2kg onion, 4kg wheat and 6kg rice is Rs. 90. The cost of 6kg onion 2kg wheat and 3kg rice is Rs. 70. Find the cost of each item per kg by matrix method.

 $A^{-1} = \frac{1}{7} \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$

Ans. cost of 1kg onion = x cost of 1kg wheat = y cost of 1kg rise = z 4x + 3y + 2z = 602x + 4y + 6z = 90 6x + 2y + 3z = 70

$$A = \begin{bmatrix} 4 & 3 & 2 \\ 2 & 4 & 6 \\ 6 & 2 & 3 \end{bmatrix} B = \begin{bmatrix} 60 \\ 90 \\ 70 \end{bmatrix} X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$|A| = \begin{vmatrix} 4 & 3 & 2 \\ 2 & 4 & 6 \\ 6 & 2 & 3 \end{vmatrix} = 50 \neq 0$$

$$aiJ A = \begin{bmatrix} 0 & -5 & 10 \\ 30 & 0 & -20 \\ -20 & 10 & 10 \end{bmatrix}$$

$$A^{-1} = \frac{1}{|A|} (aiJ A) = \frac{1}{80} \begin{bmatrix} 0 & -5 & 10\\ 30 & 0 & -20\\ -20 & 10 & 10 \end{bmatrix}$$

 $X = A^{-1}B$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 5 \\ 8 \\ 8 \end{bmatrix}$$

x = 5, y = 8, z = 8