Important Questions Class 12 Maths Chapter 8 Application of Integrals

4 Mark Questions

1. Find the area of the region bounded by the curve $y^{2}=x$ and the lines $x=1, x=4$ and x - axis.
Ans. $y^{2}=x$ is the equation of parabola and $x=1, x=4$ and $x-$ axis
Req. area $=\int_{1}^{4} \sqrt{x} d x$

$$
=\frac{14}{3} \text { sq unit }
$$

2. Find the area of the region bounded by $y^{2}=9 x, x=2, x=4$ and the $x-a x i s$ in the first quadrant.
Ans. $y^{2}=9 x, x=2, x=4, x$-axis in the first quadrant.

$$
=\int_{2}^{4} \sqrt{9 x} d x=(16-4 \sqrt{2}) \text { sq unit }
$$

3. Find the area of the region bounded by the parabola $y=x^{2}+1$ and the lines $y=x$, $x=0$ and $x=2$.
Ans. $y=x^{2}+1$
$y=x, x=0, x=2$

$$
=\int_{0}^{2}\left(x^{2}+1\right) d x-\int_{0}^{2} x d x
$$

4. Find area of the region bounded $x^{2}=4 y, y=2, y=4$ and the y-axis in the first quadrant.
Ans. $x^{2}=4 y, y=2, y=4 y$-axis in the first quadrant

$$
\begin{aligned}
& =2 \int_{2}^{4} \sqrt{y} d y \\
& =\left(\frac{32-8 \sqrt{2}}{3}\right) \text { sq unit }
\end{aligned}
$$

5. Find the area of the region bounded by the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$.

Ans. $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$

$$
\begin{aligned}
& =4 \int_{0}^{2} \frac{3}{2} \sqrt{4-x^{2}} d x \\
& =4 \int_{0}^{2} \frac{3}{2} \sqrt{2^{2}-x^{2}} d x \\
& =6 \pi s q \text { unit }
\end{aligned}
$$

6. Find the area of the region in the first quadrant enclosed by $\mathbf{x} \boldsymbol{- a x i s}$ and $x=\sqrt{3} y$ by the circle $x^{2}+y^{2}=4$.

Ans.
x - axis
$x=\sqrt{3} y$
$x^{2}+y^{2}=4$
in first quadrant.

$$
\begin{aligned}
& =\frac{1}{\sqrt{3}} \int_{0}^{\sqrt{3}} x d x+\int_{\sqrt{3}}^{2} \sqrt{4-x^{2}} d x \\
& =\frac{\pi}{3} \text { sq unit }
\end{aligned}
$$

7. Draw the graph of the curve $y=\sqrt{9-x^{2}}$ and find the area bounded by this curve and the coordinate axis.
Ans.

$=\int_{0}^{3} \sqrt{9-x^{2}} d x$

$$
\begin{aligned}
& =\int_{0}^{3} \sqrt{3^{2}-x^{2}} d x \\
& =\frac{9 \pi}{4} s q \text { unit }
\end{aligned}
$$

8. The area between $x=y^{2}$ and $x=4$ is divided into equal parts by the line $x=a$, find the value of a.
Ans. $x=y 2$
$x=4$
$x=a$
ATQ

$$
\begin{aligned}
& 2 \int_{0}^{a} \sqrt{x} d x=2 \int_{2}^{4} \sqrt{x} d x \\
& {\left[\frac{x^{\frac{3}{2}}}{3 / 2}\right]_{0}^{1}=\left[\frac{x^{3 / 2}}{3 / 2}\right]_{2}^{4}} \\
& a=(4) 2 / 3 \text { sq unit }
\end{aligned}
$$

9. Find the area of the region bounded by the parabola $y=x^{2}$ and $y=|x|$. Ans. $\mathrm{y}=\mathrm{x}^{2}$
$y=|x|$
$\Rightarrow y=x$

$$
\begin{aligned}
& y=-x \\
& =2 \int_{0}^{1}\left(x-x^{2}\right) d x
\end{aligned}
$$

10. Find the area of ellipse $\frac{x^{2}}{a^{2}} \frac{y^{2}}{b^{2}}=1$.

Ans. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

$$
\begin{aligned}
& =4 \int_{0}^{a} \frac{b}{a} \sqrt{a^{2}-x^{2}} d x \\
& =\pi a b \text { sq unit }
\end{aligned}
$$

11. Find the area bounded by the curve $x^{2}=4 y$ and the line $x=4 y-2$.

Ans. $x^{2}=4 y$
$x=4 y-2$
Req. area $=$

$$
\int_{-1}^{2} \frac{1}{4}(x+2) d x-\frac{1}{4} \int_{-1}^{2} x^{2} d x
$$

$=\frac{9}{8}$ squnit

12. Find the area of the region bounded by the curve $y^{2}=4 x$ and the line $x=3$.

Ans. $y^{2}=4 x$
$x=3$

$$
\begin{aligned}
& =2 \int_{0}^{3} \sqrt{4 x} d x \\
& =8 \sqrt{3} \text { sq unit }
\end{aligned}
$$

13. Find the area between the curve $y=|x+3|$, the $x-a x i s$ and the lines $x=-6$ and $x=$ 0.

Ans. $y=|x+3|$
x-aixs
$x=-6, x=0$

$$
\begin{aligned}
& \int_{-6}^{0}|x+3| d x=\int_{-6}^{-3}-(x+3) d x+\int_{-3}^{0}(x+3) d x \\
& =9 \text { sq unit. }
\end{aligned}
$$

14. Find the Area lying in the first quadrant and bounded by the circle $x^{2}+y^{2}=4$ and the lines $x=0$ and $x=2$.
Ans. $x^{2}+y^{2}=4$
$x=0$
$x=2$
Area

$$
\begin{aligned}
& =\int_{0}^{\pi / 2} \sqrt{4-x^{2}} d x \\
& =\int_{0}^{\pi / 2} \sqrt{2^{2}-x^{2}} d x \\
& =\pi s q \text { unit }
\end{aligned}
$$

15. Find the Area of the region bounded by the curve $y^{2}=4 x, y$-axis and the line $y=$ 3.

Ans. $y^{2}=4 x$
y-axis
$y=3$

$$
\begin{aligned}
& \text { Area }=\int_{0}^{3} \frac{y^{2}}{4} d y \\
& =\frac{9}{4} \text { sq.unit }
\end{aligned}
$$

16. Find the area bounded by the curves $(x-1)^{2}+y^{2}=1$ and $x^{2}+y^{2}=1$. Ans.

$$
\begin{aligned}
& (x-1)^{2}+y^{2}=1-----(1) \\
& x^{2}+y^{2}=1-------(2)
\end{aligned}
$$

On solving (1) and (2)
$x=\frac{1}{2}, y=\frac{\sqrt{3}}{2}$

$$
\begin{aligned}
& \text { Area }=2\left[\int_{0}^{1 / 2} \sqrt{1-(x-1)^{2}} d x+\int_{1 / 2}^{1} \sqrt{1-x^{2}} d x\right] \\
& =\left(\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}\right) \text { sq. unit }
\end{aligned}
$$

17. Find the area of the region bounded by the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y, a>0$. Ans. $y^{2}=4 a x$
$x^{2}=4 a y$
on solving

$$
\begin{aligned}
& x=4 a, y=4 a \\
& \text { Area }=\int_{0}^{4 a} \sqrt{a x} d x-\int_{0}^{4 a} \frac{x^{2}}{4 a} d x \\
& =\frac{16 a^{2}}{3} \text { sq unit. }
\end{aligned}
$$

18. Find the area of the region bounded by the curves $y=x^{2}+2, y=x, x=0$ and $x=3$. Ans. $y=x^{2}+2$

$$
\begin{aligned}
& y=x \\
& x=0 \\
& x=3
\end{aligned}
$$

$$
\begin{aligned}
& \text { Area }=\int_{0}^{3}\left(x^{2}+2\right) d x-\int_{0}^{3} x d x \\
& =\frac{21}{2} \text { sq unit. }
\end{aligned}
$$

19. Find the area of the region

$$
\left\{(x, y): x^{2} \leq y \leq x\right\} .
$$

Ans. $y=x^{2}$

$$
\begin{aligned}
& y=x \\
& \Rightarrow x=0, y=0 \\
& x=1, y=1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Area }=\int_{0}^{1} x d x-\int_{0}^{1} x^{2} d x \\
& =\frac{1}{6} \text { sq. unit }
\end{aligned}
$$

20. Find the area bounded by the curves

$$
\left\{(x, y): x^{2}+y^{2} \leq 2 a x, y^{2}>a x, a>0, x>0, y>0\right\} .
$$

Ans.

$$
x^{2}+y^{2}=2 a x \Rightarrow(x-a)^{2}+y^{2}=a^{2}
$$

$$
\begin{aligned}
& y^{2}=a x \\
& \Rightarrow x=a, y=a
\end{aligned}
$$

$$
\begin{aligned}
& x=0, y=0 \\
& \text { Area }=\int_{0}^{a} \sqrt{2 a x-x^{2}} d x-\int_{0}^{a} \sqrt{a x} d x \\
& =\frac{a^{2}}{12}(3 \pi-8) \text { sq. unit }
\end{aligned}
$$

21. Find the area of the region:

$$
\left\{(x, y): x^{2}+y^{2} \leq 1 \leq x+y\right\} .
$$

Ans. $x^{2}+y^{2}=1$

$$
\begin{aligned}
& x+y=1 \\
& \text { Area }=\int_{0}^{1} \sqrt{1-x^{2}} d x-\int_{0}^{1}(1-x) d x \\
& =\frac{\pi}{4}-\frac{1}{2} \text { sq unit }
\end{aligned}
$$

22. Using integration find the area of the triangular region whose side have the equations $y=2 x$
$+1, y=3 x+1$, and $x=4$.

Ans.

$$
\begin{aligned}
& y=2 x+1 \\
& y=3 x+1 \\
& x=4
\end{aligned}
$$

On solving

$$
\begin{aligned}
& A(0,1), B(4,9), C(4,13) \\
& \text { Area }=\int_{0}^{4}(3 x+1) d x-\int_{0}^{4}(2 x+1) d x \\
& =8 \text { sq unit }
\end{aligned}
$$

23. Calculate the area of the region enclosed between eh circles: $x^{2}+y^{2}=16$ and $(x+4)^{2}+y^{2}=16$.
Ans. $x^{2}+y^{2}=16$

$$
(x+4)^{2}+y^{2}=16
$$

Intersecting at $x=-2$

$$
\begin{aligned}
& \text { Area }=4 \int_{-4}^{-2} \sqrt{16-x^{2}} d x \\
& =\left(-8 \sqrt{3}+\frac{32 \pi}{3}\right) \text { sq unit }
\end{aligned}
$$

24. Find the area of the circle $x^{2}=y^{2}=15$ exterior to the parabola $y^{2}=6 x$ Ans.

$$
\begin{aligned}
& \text { Area }=2 \int_{0}^{2} \sqrt{6 x} \quad d x+2 \int_{2}^{4} \sqrt{16-x^{2}} \\
& =\frac{4}{3}[8 \pi-\sqrt{3}]
\end{aligned}
$$

25. Find the area bounded by the $\mathbf{y}-$ axis, $\mathbf{y}=\cos \mathbf{x}$ and $\mathbf{y}=\sin \mathbf{x}, 0 \leq x \leq \frac{\pi}{2}$ Ans.

$$
\text { Area }=\int_{0}^{\pi / 4}(\cos x-\sin x) d x
$$

$$
=\sqrt{2}-1 \text { sq unit }
$$

26. Using integration, find the area of the region in the first quadrant enclosed by the x - axis, the line $y=x$ and the circle $x^{2}+y^{2}=32$.
Ans.

$$
\text { Area }=\int_{0}^{4} x d x+\int_{4}^{4 \sqrt{2}} \sqrt{32-x^{2}} d x
$$

$=4 \pi s q$ unit

6 Marks Questions

1. Find the area of the region bounded by the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$. Ans.

$$
\frac{x^{2}}{16}+\frac{y^{2}}{9}=1
$$

$$
\begin{aligned}
& \frac{y^{2}}{9}=1-\frac{x^{2}}{16} \\
& y^{2}=\frac{9}{16}\left(16-x^{2}\right)
\end{aligned}
$$

$$
y=\frac{3}{4} \sqrt{16-x^{2}}
$$

Required area

$$
\begin{aligned}
& =A \int_{0}^{4} \frac{3}{\not A^{\prime}} \sqrt{16-x^{2}} d x \\
& =3\left[\frac{x}{4} \sqrt{16-x^{2}}+\frac{16}{2} \sin ^{-1}\left(\frac{x}{4}\right)\right]_{0}^{4} \\
& {\left[\because \sqrt{a^{2}-x^{2}}=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}\right]} \\
& =3\left[\left(0+8 \sin ^{-1}(1)\right)-(0)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =3\left[8 \sin ^{-1}\left(\sin \frac{\pi}{2}\right)\right] \\
& =3.8 \cdot \frac{\pi}{2^{\prime}} \\
& =12 \pi s q \text { unit }
\end{aligned}
$$

2. Find the area of the smaller part of the circle $x^{2}+y^{2}=a^{2}$ cut off by the line $x=\frac{a}{\sqrt{2}}$. Ans.

$x^{2}+y^{2}=a^{2}$

$$
\begin{gathered}
x=\frac{a}{\sqrt{2}} \\
=2 \int_{\frac{a}{\sqrt{2}}}^{a} \sqrt{a^{2}-x^{2}} d x \\
=2\left[\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}\right]_{\frac{a}{\sqrt{2}}}^{a} \\
=\frac{\pi a^{2}}{4}-\frac{a}{2} s q \text { unit. }
\end{gathered}
$$

3. Prove the area of a circle of radius \mathbf{r} is πr^{2} square units.

Ans. $x^{2}+y^{2}=r^{2}$

$$
\begin{aligned}
& =4 \int_{0}^{r} \sqrt{r^{2}-x^{2}} d x \\
& \text { put } x=r \sin \theta
\end{aligned}
$$

$$
\begin{aligned}
& d x=r \cos \theta d \theta \\
& =4 \int_{0}^{\pi / 2} r \cos \theta d \theta \cdot r \cos \theta \\
& =4 \int_{0}^{\pi / 2} r^{2} \cos ^{2} \theta d \theta \\
& =4 r^{2} \int_{0}^{\pi / 2}\left(\frac{1-\cos 2 \theta}{2}\right) d \theta \\
& =\pi r^{2} \text { sq unit }
\end{aligned}
$$

4. Find the area enclosed between the curve $y=x^{3}$ and the line $y=x$. Ans. $y=x^{3}, y=x$

$$
\begin{aligned}
& \Rightarrow x^{3}=x \\
& x=0, x=-1, x=1 \\
& =2 \int_{0}^{1}\left(x-x^{3}\right) d x \\
& =2\left[\frac{x^{2}}{2}-\frac{x^{4}}{4}\right]_{0}^{1}
\end{aligned}
$$

$$
\begin{aligned}
& =2\left[\left(\frac{1}{2}-\frac{1}{4}\right)-(0)\right] \\
& =2\left(\frac{2-1}{4}\right)=\frac{1}{2} \text { sq unit. }
\end{aligned}
$$

5. Find the area of the circle $4 x^{2}+4 y^{2}=9$ which is interior to the parabola $y^{2}=4 x$. Ans.

$$
4 x^{2}+4 y^{2}=9------(1)
$$

$$
y^{2}=4 x--------(2)
$$

On solving (1) and (2)

$$
y=1 / 2
$$

$$
\begin{aligned}
& =2\left(\int_{0}^{1 / 2} 2 \sqrt{y} d y+\int_{1 / 2}^{3 / 2} \sqrt{\frac{9}{4}-y^{2}} d y\right) \\
& =\left[\frac{\sqrt{2}}{6}+\frac{9 \pi}{8}-\frac{9}{4} \sin ^{-1}\left(\frac{1}{3}\right)\right] \text { sq. unit. }
\end{aligned}
$$

6. Using integration, find the area of region bounded by the triangle whose vertices are
$(-1,0),(1,3)$ and (3, 2).
Ans.

$A(-1,0) B(1,3) C(3,2)$
Equation of $A B$

$$
\begin{aligned}
& y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right) \\
& y-0=\frac{3-0}{1+1}(x+1)
\end{aligned}
$$

$y=\frac{3}{2}(x+1)$
Similarly
Equation of BC $y=\frac{-1}{2}(x-7)$
Equation of $\mathrm{AC}=\frac{1}{2}(x+1)$

$$
\begin{aligned}
& \text { Area } \triangle A B C=\int_{-1}^{1} \frac{3}{2}(x+1) d x+\int_{1}^{3} \frac{1}{2}(x-7) d x \\
& -\int_{-1}^{3} \frac{1}{2}(x+1) d x \\
& =4 \text { sq. unit }
\end{aligned}
$$

7. Draw a rough sketch of the region

$$
\left\{(x, y): y^{2} \leq 3 x, 3 x^{2}+3 y^{2}=16\right\}
$$

and find the area enclosed by the region using method of integration.
Ans. $y^{2}=3 x$

$$
3 x^{2}+3 y^{2}=16
$$

On solving

$$
x=\frac{-9+\sqrt{273}}{6}=p
$$

$$
\begin{aligned}
\text { Area } & =2\left[\int_{0}^{p} \sqrt{3 x} d x+\int_{p}^{4 \sqrt{3}} \sqrt{\frac{16-3 x^{2}}{3}} d x\right] \\
& =\frac{4}{\sqrt{3}}(p)^{3 / 2}+\frac{4 \pi}{3}-\frac{p}{2} \sqrt{\frac{16}{3}-p^{2}} \\
& -\frac{8}{3} \sin ^{-1}\left(\frac{p}{4 / \sqrt{3}}\right)
\end{aligned}
$$

8. Using integration, find the area of the region given below:

$$
\left\{(x, y): 0 \leq y \leq x^{2}+1,0 \leq y \leq x+1,0 \leq x \leq 2\right\}
$$

Ans. $y=x^{2}+1$

$$
y=x+1
$$

$$
x=2
$$

$$
\begin{aligned}
& \text { Area }=\int_{0}^{1}\left(x^{2}+1\right) d x+\int_{1}^{2}(x+1) d x \\
& =\frac{23}{6} \text { sq unit }
\end{aligned}
$$

9. Compute the area bounded by the lines $x+2 y=2, y-x=1$ and $2 x+y=7$. Ans.

$$
x+2 y=2-----(1)
$$

$$
\begin{aligned}
& y-x=1-----(2) \\
& 2 x+y=7----(3)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Area }=\int_{0}^{2}\left[(1+x)-\left(\frac{2-x}{2}\right)\right] d x+\int_{2}^{4}\left[(7-2 x)-\left(\frac{2-x}{2}\right)\right] d x \\
& =6 \text { sq. unit }
\end{aligned}
$$

10. Find Smaller area enclosed by the circle $x^{2}+y^{2}=4$ and the lines $x+y=2$. Ans.

$$
\begin{aligned}
& x^{2}+y^{2}=4-----(1) \\
& x+y=2------(2)
\end{aligned}
$$

Finding smaller area. On solving (1) and (2)

$$
\begin{aligned}
& x=0,2 \\
& \text { Area }=\int_{0}^{2} \sqrt{4-x^{2}} d x-\int_{0}^{2}(2-x) d x \\
& =(\pi-2) \text { sq unit }
\end{aligned}
$$

11. Find the area between the curves $y=x$ and $y=x^{2}$.

Ans. $y=x$
$y=x^{2}$
On solving $x=0,1$

$$
\begin{aligned}
& \text { Area }=\int_{0}^{1}\left(x-x^{2}\right) d x \\
& =\frac{1}{6} \text { sq unit. }
\end{aligned}
$$

12. Sketch the graph of $\mathbf{y}=|\mathbf{x}+3|$ and evaluate $\int_{-5}^{0}|x+3| d x$.

Ans. $y=|x+3|$
$\Rightarrow y=(x+3)$
$y=-(x+3)$

$$
\begin{aligned}
& \int_{-6}^{0}|x+3| d x=? \\
& \text { Area }=\int_{-6}^{-3}(x+3) d x+\int_{-3}^{0}(x+3) d x \\
& =9 \text { sq. unit. }
\end{aligned}
$$

13. Find the area bounded by the curve $\mathbf{y}=\boldsymbol{\operatorname { s i n }} \mathbf{x}$ between $\mathbf{x}=0$ and $\mathbf{x}=2 \pi$ Ans. $y=\sin x$

$$
\begin{aligned}
& x=0, x=2 \pi \\
& \text { Area }=2 \int_{0}^{\pi} \sin x d x
\end{aligned}
$$

$$
\begin{aligned}
& =-2[\cos x]_{0}^{\pi} \\
& =-2[\cos \pi-\cos \theta] \\
& =-2[-1-1]=4 s q \text { unit }
\end{aligned}
$$

14. Find the area enclosed by the parabola $y^{2}=4 a x$ and the line $y=m x$.

Ans. $y^{2}=4 a x$

$$
\begin{aligned}
& y=m x \\
& x=\frac{4 a}{m^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Area }=\int_{0}^{4 a / m^{2}} \sqrt{4 a x} d x-\int_{0}^{\frac{4 a}{m^{2}}} m x d x \\
& =\frac{8 a^{2}}{3 m^{2}} \text { sq unit. }
\end{aligned}
$$

15. Find the area of the region

$$
\left\{(x, y): 0 \leq y \leq\left(x^{2}+1\right), 0 \leq y \leq(x+1), 0 \leq x \leq 2\right\} .
$$

Ans. $y=x^{2}+1$
$y=x+1$
$x \leq 2$

$$
\begin{aligned}
& \text { Area }=\int_{0}^{1}\left(x^{2}+1\right) d x+\int_{0}^{1}(x+1) d x \\
& =\frac{23}{6} \text { sq unit }
\end{aligned}
$$

16. Find the area enclosed by the parabola $4 y=3 x^{2}$ and the line $2 y=3 x+12$.

Ans. $4 y=3 x^{2}$
$2 y=3 x+12$
$x=-2,4$

$$
\begin{aligned}
& \text { Area }=\int_{-2}^{4} \frac{3 x+12}{2} d x-\int_{-2}^{4} \frac{3}{4} x^{2} d x \\
& =27 \text { sq unit. }
\end{aligned}
$$

17. Find the area of the smaller region bounded by the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ and the line $\frac{x}{3}+\frac{y}{2}=1$.
Ans. $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$

$$
\frac{x}{3}+\frac{y}{2}=1
$$

$$
\Rightarrow \frac{x^{2}}{(3)^{2}} \frac{y^{2}}{(2)^{2}}=1
$$

is the equation of ellipse and
$\frac{x}{3}+\frac{y}{2}=1$ is the equation of intercept form

$$
\begin{aligned}
& \text { Area }=\frac{2}{3} \int_{0}^{3} \sqrt{9-x^{2}} d x-\int_{0}^{3}\left(\frac{6-2 x}{3}\right) d x \\
& =\frac{3}{2}(\pi-2) \text { squnit. }
\end{aligned}
$$

18. Find the area of the smaller region bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the line $\frac{x}{a}+\frac{y}{b}=1$.
Ans.

$$
y=\frac{b}{a} \sqrt{a^{2}-x^{2}}
$$

$$
\begin{aligned}
& \text { Area }=\int_{0}^{a} \frac{b}{a} \sqrt{a^{2}-x^{2}} d x-\int_{0}^{a} \frac{b}{a}(a-x) \\
& =\frac{a b}{4}(\pi-2) \text { sq unit }
\end{aligned}
$$

19. Find the area of the region enclosed by the parabola $x^{2}=y$, the line $y=x+2$ and the x - axis.
Ans.

$$
\text { Area }=\int_{-1}^{2}(x+2) d x-\int_{-1}^{2} x^{2} d x
$$

$=\frac{9}{2}$ sq. unit

20. Using method of integration, find the area bounded by the curve $|x|+|y|=1$.

Ans. $|x|+|y|=1$

$$
\begin{gathered}
\Rightarrow x+y=1 \\
-x+y=1 \\
x-y=1 \\
-x-y=1
\end{gathered}
$$

$$
\text { Area }=4 \int_{0}^{1}(1-x) d x
$$

$=2 s q$ unit
21. Find area bounded by curves

$$
\left\{(x, y): y \geq x^{2} \text { and } y=|x|\right\} .
$$

Ans. $y=|x|$

$$
\begin{aligned}
& \qquad \text { Area }=2 \int_{0}^{1}\left(x-x^{2}\right) d x \\
& =\frac{1}{3} \text { sq unit. }
\end{aligned}
$$

22. Using method of integration find the area of the triangle $A B C$, coordinates of whose vertices are $A(2,0), B(4,5)$ and $C(6,3)$.

Ans.

$$
\text { Area }=\frac{5}{2} \int_{2}^{4}(x-2) d x+\int_{4}^{6}-(x-9) d x-\frac{3}{4} \int_{2}^{6}(x-2) d x
$$

$=7 s q$ unit
23. Using method of integration, find the area of the region bounded by lines:
$2 x+y=4,3 x-2 y=6$
and $x-3 y+5=0$.
Ans.

$$
\text { Area }=\int_{1}^{4} \frac{x+5}{3} d x+\int_{1}^{2}-(2 x-4)+\int_{2}^{4} \frac{3 x-6}{2}
$$

$=\frac{7}{2}$ sq unit.

24. Find the area of two regions

$$
\left\{(x, y): y^{2} \leq 4 x, 4 x^{2}+4 y^{2} \leq 9\right\} .
$$

Ans.

$$
\begin{gathered}
y^{2}=4 x, 4 x^{2}+4 y^{2}=9 \\
\text { Area }=2\left[\int_{0}^{1 / 2} 2 \sqrt{x} d x+\int_{1 / 2}^{3 / 2} \sqrt{\left(\frac{3}{2}\right)^{2}-x^{2}} d x\right] \\
=\frac{\sqrt{2}}{6}+\frac{9 \pi}{8}-\frac{9}{4} \sin ^{-1}\left[\frac{1}{3}\right]
\end{gathered}
$$

https://www.evidyarthi.in/

