KENDRIYA VIDYALAYA GACHIBOWLI, GPRA CAMPUS, HYD-32 PRACTICE PAPER 01 (2023-24) (ANSWERS) CHAPTER 01 RELATIONS AND FUNCTIONS

SUBJECT: MATHEMATICS MAX. MARKS: 40
CLASS: XII DURATION: 1½ hrs

General Instructions:

- (i). **All** questions are compulsory.
- (ii). This question paper contains 20 questions divided into five Sections A, B, C, D and E.
- (iii). Section A comprises of 10 MCQs of 1 mark each. Section B comprises of 4 questions of 2 marks each. Section C comprises of 3 questions of 3 marks each. Section D comprises of 1 question of 5 marks each and Section E comprises of 2 Case Study Based Questions of 4 marks each.

(iv). There is no overall choice.(v). Use of Calculators is not permitted						
<u>SECTION – A</u> Questions 1 to 10 carry 1 mark each.						
1.	The relation <i>R</i> in the set of real numbers (<i>a</i>) reflexive and transitive (<i>c</i>) reflexive and symmetric Ans: (<i>c</i>) reflexive and symmetric	defined as $R = \{(a, b) \in R \times R : 1 + ab > 0\}$ is (b) symmetric and transitive (d) equivalence relation				
2.	Let the function 'f' be defined by $f(x) = (a)$ onto function (c) one-one, into function Ans: (d) many-one, into function	(<i>b</i>) one	$\forall x \in R$. There-one, onto funiny-one, into funity	ction		
3.	Let set X = {1, 2, 3} and a relation R is minimum ordered pairs which should be are (a) {(1, 1), (2, 3), (1, 2)} (c) {(1, 1), (3, 3), (3, 1), (2, 3)} Ans: (c), For reflexive (a, a) ∈ R for a So it can be (c) or (d) For symmetric (1, 3) ∈ R, then (3, 1) above observation.	(b) (d) ∈ X	(3, 3), (3, 1), {(1, 1), (3, 3),	make in (1, 2)} (3, 1),	it reflexive and symmetric (1, 2)}	
4.	Let Z be the set of integers and R be a ref. 5. Then number of equivalence classes at (a) 2 (b) 3 Ans: (d) 5 as remainder can be 0, 1, 2, 3, 4.		lefined in Z sud	ch that a	aRb if (a – b) is divisible by 5	
5.	Let R be a relation defined as $R = \{(x, x) (a) \text{ reflexive} (b) \text{ symmetric} \}$ Ans: (a) reflexive, as for all $a \in A$, (a, a)	· / ·				
6.	If $R = \{(x, y) : x + 2y = 8\}$ is a relation (a) $\{3\}$ (c) $\{1, 2, 3, 8\}$ Ans: (b), as $R = \{(x, y) : x + 2y = 8\}$ is a	(b) (d)	{1, 2, 3} {1, 2}	is		

https://www.evidyarthi.in/

Page - 1 -

$$\therefore R = \{(2, 3), (4, 2), (6, 1)\},\$$

- \therefore range = {1, 2, 3}.
- 7. Let $A = \{a, b, c\}$, then the total number of distinct relations in set A are
 - (a) 64
- (b) 32
- (c) 256
- (d) 512

Ans: (d), as given $A = \{a, b, c\}$.

A relation is a subset of $A \times A$.

$$n(A \times A) = 9$$

we know total subsets of a set containing n elements is 2^n .

Total relations = $2^9 = 512$

- **8.** Let $X = \{x^2 : x \in N\}$ and the function $f: N \to X$ is defined by $f(x) = x^2$, $x \in N$. Then this function is
 - (a) injective only (b) not bijective
- (c) surjective only (d) bijective

Ans: (d) Function is injective as for $x_1, x_2 \in N$,

$$f(x_1) = f(x_2) \Rightarrow x_1^2 = x_2^2 \Rightarrow x_1 = x_2$$
, as $x_1, x_2 > 0$.

Function is surjective as for $y \in x$

There exists $x \in N$ such that y = f(x)

$$\Rightarrow y = x^2 \Rightarrow x = \sqrt{y} \in N.$$

Function is bijective

For Q9 and Q10, a statement of assertion (A) is followed by a statement of reason (R). Choose the correct answer out of the following choices.

- (a) Both A and R are true and R is the correct explanation of A.
- (b) Both A and R are true but R is not the correct explanation of A.
- (c) A is true but R is false.
- (d) A is false but R is true.
- 9. Assertion (A): In set $A = \{1, 2, 3\}$ a relation R defined as $R = \{(1, 1), (2, 2)\}$ is reflexive.

Reason (R): A relation R is reflexive in set A if $(a, a) \in R$ for all $a \in A$.

Ans: (d) *A* is false but *R* is true.

10. Assertion (A): In set $A = \{a, b, c\}$ relation R in set A, given as $R = \{(a, c)\}$ is transitive.

Reason (*R*): A singleton relation is transitive.

Ans: (a) Both A and R are true and R is the correct explanation of A.

<u>SECTION – B</u>

Questions 11 to 14 carry 2 marks each.

11. Show that the relation R in the set $\{1, 2, 3\}$ given by $R = \{(1,1), (2, 2), (3, 3), (1, 2), (2, 3)\}$ is reflexive but neither symmetric nor transitive.

Ans: Given $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)\}\$ defined on $R : \{1, 2, 3\}\$ $\{1, 2, 3\}$

For reflexive: As (1, 1), (2,2), $(3, 3) \in \mathbb{R}$. Hence, reflexive

For symmetric: $(1, 2) \in \mathbb{R}$ but $(2, 1) \notin \mathbb{R}$. Hence, not symmetric.

For transitive: $(1, 2) \in \mathbb{R}$ and $(2, 3) \in \mathbb{R}$ but $(1, 3) \notin \mathbb{R}$. Hence, not transitive.

12. Prove that the Greatest Integer Function $f: R \to R$, given by f(x) = [x] is neither one-one nor onto. Where [x] denotes the greatest integer less than or equal to x.

Ans: $f: \mathbb{R} \to \mathbb{R}$ given by f(x) = [x]

Injectivity: Let $x_1 = 2.5$ and $x_2 = 2$ be two elements of R.

$$f(x_1) = f(2.5) = [2.5] = 2$$

$$f(x_2) = f(2) = [2] = 2$$

 $f(x_1) = f(x_2) \text{ for } x_1 \neq x_2$

 $\Rightarrow f(x) = [x]$ is not one-one *i.e.*, not injective.

Surjectivity: Let $y = 2.5 \in R$ be any element.

$$\therefore f(x) = 2.5 \Rightarrow [x] = 2.5$$

Which is not possible as [x] is always an integer.

 $\Rightarrow f(x) = [x]$ is not onto *i.e.*, not surjective.

13. Let $A = \{1, 2, 3\}, B = \{4, 5, 6, 7\}$ and let $f = \{(1, 4), (2, 5), (3, 6)\}$ be a function from A to B. Show that *f* is one-one.

Ans: Given $f: \{1, 2, 3\} \rightarrow \{4,5,6,7\}$

as
$$f = \{(1,4), (2,5), (3,6)\}.$$

We have
$$f(1) = 4$$
, $f(2) = 5$, $f(3) = 6$.

We notice $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$.

Hence, one-one.

14. Let the function $f: R \to R$ be defined by $f(x) = \cos x \ \forall x \in R$. Show that f is neither one-one nor onto.

Ans: Given function $f(x) = \cos x$, $\forall x \in R$

$$\cos\frac{\pi}{3} = \cos\left(-\frac{\pi}{3}\right) = \frac{1}{2}$$

So, f(x) is not one-one

Now, f(x) is also not onto as range is a subset of real numbers. $(-1 \le \cos x \le 1)$

e.g. for $y = 2 \in R$ (co-domain) there is no value of $x \in R$ (domain) such that

$$y = f(x)$$
 i.e. $\cos x = 2 \ (\because -1 \le \cos x \le 1)$.

 $\frac{SECTION - C}{\text{Questions 15 to 17 carry 3 marks each.}}$

15. Let T be the set of all triangles in a plane with R a relation in T given by $R = \{(T_1, T_2) : T_1 \cong T_2\}$. Show that *R* is an equivalence relation.

Ans: Given $R = \{(T_1, T_2) \in T \times T : T_1 \cong T_2\}$

For reflexive: $(T_1, T_1) \in R$ is true as $T_1 \cong T_1$ for all $T_1 \in T$ (i.e. triangle is congruent to itself).

Hence, *R* is reflexive.

For symmetric: $(T_1, T_2) \in R \Rightarrow T_1 \cong T_2$ and $T_2 \cong T_1 (T_2, T_1) \in R$.

Hence, *R* is symmetric.

For transitive: Let(T_1, T_2) $\in R$ and $(T_2, T_3) \in R \Rightarrow T_1 \cong T_2$ and $T_2 \cong T_3$

$$\Rightarrow T_1 \cong T_3 \Rightarrow (T_1, T_3) \in R$$
.

Hence, R is transitive.

Since *R* is reflexive, symmetric and transitive, therefore *R* is an equivalence relation.

16. Show that the relation S in the set R of real numbers, defined as $S = \{(a, b) : a, b \in R \text{ and } a \le b^3\}$ is neither reflexive, nor symmetric, nor transitive.

Ans: Given $S = \{(a, b) \in R \mid a \le b^3\}$

We can consider counter example.

For reflexive: Let $(-2, -2) \in S \Longrightarrow -2 \le (-2)^3 \Longrightarrow -2 \le -8$, false, Hence, not reflexive.

For symmetric: Let $(-1, 2) \in S \Longrightarrow -1 \le (2)^3 \Longrightarrow -1 \le 8$ true,

If symmetric then $(2, -1) \in S$

 \Rightarrow 2 \leq (-1)³ \Rightarrow 2 \leq -1, false, Hence, not symmetric.

For transitive: Let $(25, 3) \in S$ and $(3, 2) \in S$

 \Rightarrow 25 \leq (3)³ and 3 \leq (2)³ \Rightarrow 25 \leq 27 and 3 \leq 8, true in both cases.

If transitive then $(25, 2) \in S \Longrightarrow 25 \le (2)^3 \Longrightarrow 25 \le 8$, false

Hence, not transitive.

17. Show that the function $f: R \to R$ defined by $f(x) = \frac{x}{x^2 + 1}$, $\forall x \in R$ is neither one-one nor onto.

Ans: For one-one: For $x_1, x_2 \in R$

$$f(x_1) = f(x_2) \Longrightarrow \frac{x_1}{{x_1}^2 + 1} = \frac{x_2}{{x_2}^2 + 1}$$

$$\Rightarrow x_1x_2^2 + x_1 = x_1^2x_2 + x_2 \Rightarrow x_1x_2(x_2 - x_1) + (x_1 - x_2) = 0$$

$$\Rightarrow$$
 $(x_2 - x_1) (x_1x_2 - 1) = 0 \Rightarrow x_2 - x_1 = 0 \text{ or } x_1x_2 = 1$

$$\Rightarrow x_1 = x_2 \text{ or } x_1x_2 = 1$$

Let
$$x_1 = 2$$
 and $x_2 = \frac{1}{2}$, then we notice $f(x_1) = f(x_2)$ but $2 \neq \frac{1}{2}$. Hence, not one-one

Here we notice $f(x) \neq 1$ for any $x \in R$

Therefore, $1 \in R$ from co-domain does not have pre-image in domain. So, not onto.

$\frac{SECTION - D}{\text{Questions 18 carry 5 marks.}}$

18. Let N denote the set of all natural numbers and R be the relation on $N \times N$ defined by (a, b) R (c, d) if ad (b + c) = bc (a + d). Show that R is an equivalence relation.

Ans: Relation R on $N \times N$ is given by

$$(a, b) R(c, d) \Leftrightarrow ad(b+c) = bc(a+d).$$

For reflexive:

For
$$(a, b) \in N \times N$$

$$(a, b) R(a, b) \Longrightarrow ab(b+a) = ba(a+b),$$

true in N

Hence, reflexive

For symmetric:

For
$$(a, b), (c, d) \in N \times N$$

$$(a, b) R(c, d) \Longrightarrow ad(b+c) = bc(a+d)$$

$$\Rightarrow cb(d+a) = da(c+b)$$
 (\times and $+$ is commutative in N)

$$\Rightarrow$$
 $(c, d) R(a, b) \forall (a, b), (c, d) \in N \times N.$

Hence, symmetric

For transitive:

For
$$(a, b), (c, d), (e, f) \in N \times N$$

Let
$$(a, b) R(c, d)$$
 and $(c, d) R(e, f)$

$$\Rightarrow ad(b+c) = bc(a+d)$$

$$\Rightarrow \frac{1}{c} + \frac{1}{b} = \frac{1}{d} + \frac{1}{a}$$

and
$$cf(d+e) = de(c+f)$$

$$\frac{1}{e} + \frac{1}{d} = \frac{1}{f} + \frac{1}{c}$$

$$\Rightarrow \frac{1}{c} + \frac{1}{b} + \frac{1}{e} + \frac{1}{d} = \frac{1}{d} + \frac{1}{a} + \frac{1}{f} + \frac{1}{c}$$

$$\Rightarrow \frac{1}{b} + \frac{1}{e} = \frac{1}{a} + \frac{1}{f}$$

$$af(e+b) = be(f+a)$$

$$\Rightarrow af(b+e) = be(a+f)$$

$$\Rightarrow$$
 $(a, b) R(e, f)$

As
$$(a, b) R(c, d), (c, d) R(e, f)$$

$$\Rightarrow$$
 (a, b) $R(e, f)$ Hence, transitive.

As relation R is reflexive, symmetric and transitive. Hence, R is an equivalence relation.

SECTION - E (Case Study Based Questions)

Questions 19 to 20 carry 4 marks each.

19. Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin's sister Raji observed and noted that possible outcomes of the throw every time belongs to set {1, 2, 3, 4, 5, 6}. Let *A* be the set of players while *B* be the set of all possible outcomes.

 $A = \{S, D\}, B = \{1, 2, 3, 4, 5, 6\}$

- (i) Let $R: B \to B$ be defined by $R = \{(x, y) : y \text{ is divisible by } x\}$. Show that relation R is reflexive and transitive but not symmetric.
- (ii) Let R be a relation on B defined by $R = \{(1, 2), (2, 2), (1, 3), (3, 4), (3, 1), (4, 3), (5, 5)\}$. Then check whether R is an equivalence relation.
- (iii) Raji wants to know the number of functions from A to B. How many number of functions are possible?

OR

(iii) Raji wants to know the number of relations possible from A to B. How many numbers of relations are possible?

Ans: (i) Since every number is divisible by itself, So

 $(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6) \in R.$

So, R is reflexive relation on B. Also $(1, 2) \in R$ but (2, 1) does not belong here non-symmetric.

(ii) $R = \{(1, 2), (2, 2), (1, 3), (3, 4), (3, 1), (4, 3), (5, 5), \}$

Since $(1, 1) \in R$, so R is not reflexive.

Hence R is not an equivalence relation.

(iii) As number of functions possible from set A to set B, if set A contains m elements and set B contains n elements is given by n^m .

Now, n(A) = 2; n(B) = 6

Number of possible functions = 6^2

OR

As, number of relations from a set with 'm' elements to a set with n elements is 2^{mn} .

Now n(A) = 2; n(B) = 6

Required number of relations = 2^{12}

20. A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever

Let I be the set of all citizens of India who were eligible to exercise their voting right in general election held in 2019. A relation 'R' is defined on I as follows:

- $R = \{(V_1, V_2) : V_1, V_2 \in I \text{ and both use their voting right in general election} 2019\}$
- (i) Two neighbours X and $Y \in I$. X exercised his voting right while Y did not cast her vote in general election-2019. Check whether X is related to Y or not.
- (ii) Mr. 'X' and his wife 'W' both exercised their voting right in general election-2019. Show that $(X, W) \in R$ and $(W, X) \in R$.
- (iii) Three friends F_1 , F_2 and F_3 exercised their voting right in general election-2019. Show that $(F_1, F_2) \in R$, $(F_2, F_3) \in R$ and $(F_1, F_3) \in R$.

OR

Show that the relation R defined on set I is an equivalence relation.

Ans: $R = \{(V_1, V_2): V_1, V_2 \in I \text{ and both use their voting rights}\}$

It is given that *X* exercised his voting right and *Y* didn't cast her vote.

So, X is not related to Y, i.e. $(X, Y) \in R$.

(ii) $R = \{(V_1, V_2) : V_1, V_2 \in I \text{ and both use their voting rights}\}$

It is given that Mr X and his wife W both exercised their voting rights in election.

So, X is related to W and W is related to X, i.e.

 $(X, W) \in R \text{ and } (W, X) \in R$

(iii) Since all the three friends F_1 , F_2 and F_3 exercised their voting rights in election, so $(F_1, F_2) \in R$,

 $(F_2, F_3) \in R \text{ and } (F_1, F_3) \in R.$

OR

Let V be any person in I. Then V and V use their voting rights in election

Thus $(V, V) \in R$ for all $V \in I$.

So, *R* is reflexive relation on *I*.

Let V_1 and V_2 be two persons in A such that $(V_1, V_2) \in R$.

Then, $(V_1, V_2) \in R \Rightarrow V_1$ and V_2 both use their voting rights

 \Rightarrow V_2 and V_1 both use their voting rights.

 $\Rightarrow (V_2, V_1) \in R$

R is symmetric on I.

Let V_1, V_2, V_3 be three person in I such that $(V_1, V_2) \in R$ and $(V_2, V_3) \in R$.

Then $(V_1, V_2) \in R \Rightarrow V_1$ and V_2 both use their voting rights.

and $(V_2, V_3) \in R \Rightarrow V_2$ and V_3 both use their voting rights.

So, V_1 and V_3 both use their voting rights.

 \Rightarrow $(V_1, V_3) \in R$

So, *R* is transitive on *I*.

Hence, R is an equivalence relation.

Prepared by: M. S. KumarSwamy, TGT(Maths)