8

समय एवं गति का मापन

प्रेरणा को दौड़-प्रतियोगिताओं को देखने और उनमें भाग लेने में आनंद आता है। अत: वह कभी-कभी अपनी छोटी बहन के साथ टेलीविजन के खेल चैनल पर प्रसारित होने वाली तीव्र दौड़ प्रतिस्पर्धाओं को देखती है। उसे जनपद स्तर पर हुई एक अंतर्विद्यालयी प्रतियोगिता में 100 मीटर की तीव्र दौड़ जीतने पर अपने जनपद की सबसे तीव्र धाविका घोषित किया जा चुका है। अब वह राज्य स्तर की प्रतियोगिता में भाग लेने के लिए प्रशिक्षण प्राप्त कर रही है। उसकी आकांक्षा है कि वह भविष्य में अंतर्राष्ट्रीय स्तर पर 100 मीटर की तीव्र दौड़-प्रतियोगिताओं में भारत का प्रतिनिधित्व करे।

विगत ओलंपिक खेलों में हुई तीव्र दौड़ों की पुनर्प्रस्तुति देखते हुए प्रेरणा को सदैव यह विस्मय होता है कि दौड़ में लगा समय मापने में अब कितनी अधिक प्रगित हो चुकी है कि दो तेज धावक जो दौड़ की समापन रेखा को लगभग एक साथ पार करते हुए प्रतीत होते हैं, उनमें से भी विजेता की पहचान करना संभव हो गया है। उसके विद्यालय में खेल-शिक्षक धावक प्रतियोगिताओं में समय-मापन के लिए सदैव एक विशेष प्रकार की ही घड़ी उपयोग में लाते हैं जो 'विराम घड़ी' कहलाती है। समय देखने के लिए उसने अपनी माता जी को उनकी कलाई पर बंधी घड़ी का और अपनी बड़ी बहन को मोबाइल फोन का उपयोग करते हुए देखा है। उसके चाचा जी जो एक दृष्टिबाधित व्यक्ति हैं, वे एक ब्रेल अंकित घड़ी का उपयोग करते हैं। इसके साथ हाल ही में उन्होंने एक बोलने वाली घड़ी भी खरीदी है जो एक बटन के स्पर्श पर समय की घोषणा करती है। विद्यालय के प्रवेश द्वार के निकट दीवार पर भी एक बड़ी घड़ी लगी है। यही सब सोचते-सोचते उसका ध्यान सुदूर अतीत में उस समय की ओर चला गया जब लोगों के पास समय मापने के वे आधुनिक उपकरण नहीं थे जो वर्तमान समय में हमारे पास हैं और इसके विषय में जानने की उसकी उत्कंठा तीव्र हो गई।

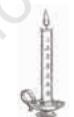
जब घड़ियाँ नहीं होती थीं तो लोग समय का मापन किस प्रकार करते थे?

8.1 समय का मापन

बहुत पहले से ही मनुष्य की रुचि व्यतीत हो रहे समय की जानकारी एकत्रित करने में रही है। मनुष्य ने यह अनुभव किया कि प्रकृति में ऐसी अनेक घटनाएँ हैं जो एक निश्चित समयावधि के पश्चात पुनरावृत्त होती हैं, जैसे — सूर्य का उदय एवं अस्त होना, प्रतिदिन परिवर्तित होती हुई चंद्रमा की कलाएँ तथा परिवर्तित होती हुई ऋतुएँ। समय-निर्धारण के लिए उन्होंने इन घटना-चक्रों का उपयोग करना आरंभ किया। सबसे पहले उन्होंने पंचांग (कैलेंडर) बनाए। सूर्य के उदय एवं अस्त होने के चक्र द्वारा एक दिन को परिभाषित किया गया। उसके बाद दिन के किसी समय को जानने की विधियों की खोज आरंभ हुई।

चित्र 8.1 — धूप-घड़ी

(क) जल-निष्क्रमण प्रकार



(ख) प्लवमान पात्र प्रकार

चित्र 8.2 — जल-घड़ी

चित्र 8.3 — रेत-घडी

चित्र 8.4 — मोमबत्ती-घड़ी

इसी क्रम में उन्होंने ऐसे अनेक यंत्र निर्मित किए जिनसे उन्हें एक दिन के अंतर्गत लघु समयांतरालों को मापने में सहायता प्राप्त हुई। इनमें से कुछ थीं धूप-घड़ियाँ, जल-घड़ियाँ, रेत-घड़ियाँ और मोमबत्ती-घड़ियाँ।

धूप-घड़ियों में समय का निर्धारण दिन में सूर्य के प्रकाश द्वारा किसी वस्तु की परछाई की परिवर्तनीय स्थिति के आधार पर किया जाता था (चित्र 8.1)।

जल-घड़ियों में समय मापन हेतु किसी पात्र के भीतर से बाहर अथवा बाहर से भीतर की ओर होने वाले जल-प्रवाह का उपयोग किया जाता था। एक प्रकार की जल-घड़ी में जल एक पात्र में लिया जाता था जिसमें समय के लिए अंकन किया होता था तथा जल उससे बाहर प्रवाहित होता था [चित्र 8.2 (क)]। दूसरे प्रकार की जल-घड़ी में एक कटोरा होता था जिसकी तली के ठीक बीच में एक छिद्र होता था। इस कटोरे को जल के पृष्ठ पर तैराया जाता था [8.2 (ख)]। धीरे-धीरे एक निश्चित समय में यह कटोरा पानी से भर जाता था और डूब जाता था। फिर इसे निकाल कर पुन: तैराया जाता था।

रेत-घड़ियों (चित्र 8.3) में समय का मापन एक बल्ब से दूसरे बल्ब में रेत के प्रवाह के आधार पर किया जाता था।

मोमबत्ती-घड़ियों (चित्र 8.4) में ऐसी मोमबत्तियाँ होती थी जिन पर अंशांकन होता था जो यह बताता था कि इन मोमबत्तियों को जलते हुए कितना समय व्यतीत हो चुका है।

पत्थरों से बनी सबसे बड़ी धूप-घड़ी का नाम सम्राट यंत्र है। इसे लगभग 300 वर्ष पहले राजस्थान के जयपुर शहर में स्थित जंतर-मंतर में बनाया गया था जो यूनेस्को द्वारा घोषित एक विश्व धरोहर स्थल है। यहाँ अनेक खगोलीय यंत्र स्थापित किए गए हैं। इसकी 27 मीटर की प्रभावी ऊँचाई के कारण इसकी छाया प्रत्येक सेकंड में लगभग 1 मिलीमीटर स्थानांतरित होती

है और एक मापक पर पड़ती है जिसे 2 सेकंड तक की अल्पाविध को मापने के लिए अंशांकित किया गया है। किसी भी अन्य धूप-घड़ी की तरह ही यह भी स्थानीय अथवा सौर समय का ही मापन करती है और भारतीय मानक समय के निर्धारण के लिए इसमें संशोधन करने की आवश्यकता होती है।

क्या आप एक साधारण जल-घड़ी बनाना चाहेंगे?

क्रियाकलाप 8.1 — आइए, निर्माण करें

- ❖ पारदर्शी प्लास्टिक की एक (1/2 लीटर की अथवा बड़ी) प्रयुक्त बोतल लीजिए जिसमें ढक्कन भी लगा हो।
- ❖ इसे लगभग बीच से काट कर दो भागों में विभाजित कीजिए, जैसे चित्र 8.5 (क) में दर्शाया गया है।
- ◆ एक ड्राइंग-पिन का उपयोग करके बोतल के ढक्कन के बीच में एक छोटा छिद्र बनाइए
 [चित्र 8.5 (ख)]।

चित्र 8.5 — एक साधारण जल-घड़ी का निर्माण करना

- 💠 बोतल के ऊपरी भाग को उल्टा करके नीचे वाले आधे भाग के ऊपर रखिए [चित्र 8.5 (ग)]।
- बोतल के ऊपरी भाग में जल भिरए। जल का स्तर स्पष्टतया दृष्टिगत हो, इसके लिए आप जल में स्याही की कुछ बूँदें अथवा रंग मिलाइए [चित्र 8.5 (घ)]।
- जल बूँद-बूँद कर बोतल के निचले भाग में गिरने लगेगा। घड़ी का उपयोग करके प्रत्येक मिनट के बाद जल के स्तर को अंकित करते जाइए जब तक कि सारा जल नीचे वाले भाग में एकत्रित नहीं हो जाता।

आपकी जल-घड़ी तैयार है। क्या आप अब अनुमान लगा सकते हैं कि इसे उपयोग में कैसे लाया जाएगा? जल को नीचे वाले भाग से वापस ऊपर के भाग में उड़ेल लीजिए और बूँद-बूँद कर नीचे के भाग में गिरते जल के स्तर पर ध्यान दीजिए। हर बार जब जल आपके द्वारा अंकित किसी चिह्न तक पहुँचता है तो इसका अर्थ है कि एक और मिनट व्यतीत हो चुका होता है।

प्राचीन भारत में समय का मापन छायाओं और जल-घड़ियों का उपयोग करके किया जाता था। छाया-आधारित समय-मापन का सबसे प्राचीन उल्लेख कौटिल्य के अर्थशास्त्र (जिसे सामान्य संवत् पूर्व दूसरी शताब्दी से सामान्य संवत् तीसरी शताब्दी के बीच रचा तथा संशोधित किया गया था) में प्राप्त होता है। सामान्य संवत् 530 के आस-पास वराह मिहिर ने एक ऊर्ध्वाधर छड़ी की छाया के पदों में समय ज्ञात करने का एक सटीक व्यंजक दिया था। जल-निष्क्रमण प्रकार की जल-घड़ियों का वर्णन अर्थशास्त्र, शार्दूलकर्णावदान तथा अन्य कुछ ग्रंथों में सामान्य संवत् की प्रारंभिक शताब्दियों में किया गया है। इन घड़ियों के द्वारा बताया गया समय बहुत यथार्थ नहीं था क्योंकि जैसे-जैसे जल का स्तर घटता था वैसे-वैसे प्रवाह की दर कम हो जाती थी। इससे प्लवमान पात्र प्रकार की घड़ी अथवा घटिका यंत्र [चित्र 8.2 (ख)] के विकास का पथ प्रशस्त हुआ। इसका पहला उल्लेख आर्यभट्ट ने किया और फिर उसके बाद के अनेक खगोलीय ग्रंथों में मिलता है। बौद्ध मठों, राजमहलों एवं नगर-चौराहों पर समय नियमित रूप से घटिका यंत्र की सहायता से मापा जाता था और प्रत्येक बार जब पात्र डूबता था तो इसकी घोषणा ढोल, शंख अथवा घंटा बजा कर की जाती थी। यद्यिप उन्नीसवीं शताब्दी के उत्तरार्ध में धीरे-धीरे घटिका-यंत्रों का स्थान लोलक घड़ियाँ लेती गईं किंतु धार्मिक स्थलों पर अनुष्ठानों में इनका उपयोग सतत होता रहा।

जैसे-जैसे मानव सभ्यता का विकास हुआ और विशेषकर जब लोगों ने दूरस्थ स्थानों की यात्राएँ करनी आरंभ की तो समय का मापन बहुत महत्वपूर्ण हो गया। इस कारण चौदहवीं शताब्दी और उसके बाद के वर्षों में भारों, गियरों और कमानियों द्वारा प्रचालित समय-मापन की उत्तरोत्तर उन्नत होती हुई यांत्रिक युक्तियों का विकास होना आरंभ हुआ। तथापि सत्रहवीं शताब्दी में लोलक घड़ी के आविष्कार को यांत्रिक उपकरणों द्वारा समय-मापन के क्षेत्र में एक प्रमुख खोज माना गया।

वैज्ञानिक से परिचय

लोलक घड़ी का आविष्कार सामान्य संवत् 1656 में हुआ और सामान्य संवत् 1657 में क्रिश्चियन हाइगेन्स (सामान्य संवत् 1629 से 1695) द्वारा इसे पेटेंट कराया गया। उन्होंने गैलीलियो गैलिली (सामान्य संवत् 1564 से 1642) द्वारा लोलकों पर किए गए प्रयोगों से प्रेरणा प्राप्त की थी। ऐसा कहा जाता है कि एक बार गिरजाघर में बैठे हुए गैलीलियो का ध्यान छत से लटके हुए एक लैंप की ओर गया जो दोलन कर रहा था। समय मापने के लिए अपनी नाड़ी का उपयोग करके गैलीलियो ने पाया कि प्रत्येक दोलन में लैंप द्वारा लिया गया समय एक समान था। विभिन्न लोलकों से प्रयोग करने के पश्चात गैलीलियो इस निष्कर्ष पर पहुँचे कि किसी निश्चित लंबाई के लोलक के लिए एक दोलन पूरा करने में लगा समय सदैव समान रहता है।

8.1.1 सरल लोलक

सरल लोलक में एक छोटी धातु की गेंद होती है (जिसे लोलक का गोलक कहा जाता है) जो एक लंबे धागे द्वारा किसी दृढ़ आधार से लटकी होती है जैसा चित्र 8.7 (क) में दर्शाया गया है। कक्षा 6 में विज्ञान की पाठ्यपुस्तक जिज्ञासा के अध्याय 'लंबाई एवं गित का मापन' में हमने एक क्रियाकलाप किया था जिसमें हमने धागे से लटके एक इरेजर/रबड़ की दोलन-गित का अवलोकन किया था। क्या लोलक उसके जैसा ही है?

विरामावस्था में लोलक अपनी माध्य स्थिति पर होता है। जब गोलक को एक ओर थोड़ा-सा विस्थापित करके छोड़ा जाता है तो यह दोलन-गित करने लगता है। इसकी गित आवर्ती गित होती है क्योंकि यह अपने पथ को एक निश्चित समयाविध के पश्चात दोहराता है।

जब किसी लोलक का गोलक अपनी माध्य स्थित 'अ' से चल कर चरम स्थित 'ब' पर पहुँचता है और वह वहाँ अपनी दिशा बदलकर दूसरी ओर की चरम स्थित 'स' पर पहुँचता है और फिर दिशा बदलकर वापस 'अ' पर लौट आता है तब यह कहा जाता है कि लोलक ने एक दोलन पूरा किया [चित्र 8.7 (ख)]। जब लोलक का गोलक एक चरम स्थिति 'ब' से दूसरी चरम स्थिति 'स' तक जाता है और वहाँ दिशा बदलकर वापस चरम स्थिति 'ब' पर लौट आता है तब भी यह लोलक एक दोलन पूरा करता है। किसी लोलक को एक दोलन पूरा करने में लगा समय इसका दोलनकाल कहलाता है। आइए, अब हम एक लोलक स्थापित करते हैं और इसका दोलनकाल मापते हैं।

क्रियाकलाप 8.2 — आइए, प्रयोग करें

- लगभग 150 cm लंबी डोरी, हुक लगी धातु की एक भारी गेंद अथवा पत्थर का एक छोटा टुकड़ा (गोलक), एक विराम-घड़ी अथवा कलाई घड़ी और लंबाई मापने के लिए एक मापक लीजिए।
- डोरी के एक सिरे पर गोलक को बाँधिए।
- ❖ डोरी के दूसरे सिरे को किसी दृढ़ आधार से इस प्रकार बाँधिए कि आधार और गोलक के मध्य डोरी की लंबाई लगभग 100 cm रहे।
- लोलक के गोलक को विरामावस्था में आने दीजिए। आपका लोलक अब प्रयोग के लिए तैयार है।

- गोलक को हल्के से पकड़िए और एक ओर थोड़ा-सा विस्थापित करके छोड़ दीजिए। ध्यान रखिए कि छोड़ते समय गोलक को झटका न लगे और डोरी सम्यक रूप से तनी रहे। क्या आपका लोलक अब दोलन कर रहा है?
- ❖ एक घड़ी का उपयोग करके लोलक को 10 दोलन पूरे करने में लगा समय मापिए। समय का यह मान तालिका 8.1 में अभिलेखित कीजिए।
- ❖ इस क्रियाकलाप को 3−4 बार दोहराइए।
- 10 दोलनों में लोलक द्वारा लिए गए समय को 10 से विभाजित कीजिए और इस प्रकार अपने लोलक के दोलनकाल का परिकलन कीजिए। तालिका 8.1 में ये मान अभिलेखित कीजिए।

तालिका 8.1—सरल लोलक का दोलनकाल

डोरी की लंबाई = 100 cm

क्र.सं.	10 दोलनों में लिया गया समय (सेकंड)	दोलनकाल (सेकंड)
1.		
2.		
3.		

क्या आपके लोलक के दोलनकाल का मान प्रत्येक प्रेक्षण के लिए लगभग समान प्राप्त होता है? इस अवलोकन से आप क्या निष्कर्ष निकालते हैं? किसी निश्चित लंबाई के लोलक का एक ही स्थान पर दोलनकाल लगभग अचर रहता है।

एक वैज्ञानिक की तरह सोचिए!

अभी-अभी आपने एक महत्वपूर्ण ऐतिहासिक प्रयोग किया है जो पहली बार गैलीलियो द्वारा किया गया था। केवल एक बात आपके द्वारा किए गए प्रयोग में भिन्न रही कि समय के मापन के लिए आपने नाड़ी स्पन्दन के स्थान पर घड़ी का उपयोग किया। मान लीजिए कि आप गैलीलियो हैं और लोलकों को लेकर प्रयोग कर रहे हैं। सोचिए कि आपके अन्वेषण के क्या-क्या बिंदु होंगे? वे कौन से प्रश्न होंगे जिनके उत्तर पाने के लिए आप प्रयोग करेंगे? क्या सभी लोलकों के दोलनकाल समान होते हैं? इसकी जाँच आप किस प्रकार करेंगे?

क्रियाकलाप 8.2 को एक ही गोलक के साथ दो या तीन अलग-अलग लंबाई के लोलक बनाकर दोहराइए। क्या दोलनकाल बदलता है? यदि ऐसा होता है तो दोलनकाल पर लंबाई का क्या प्रभाव पड़ता है? यदि लंबाई बदलने का प्रभाव दोलनकाल पर होता है तो क्या गोलक का द्रव्यमान भी इसको प्रभावित करता है? एक नियत लंबाई की डोरी और भिन्न-भिन्न द्रव्यमान के गोलकों से लोलक बनाइए और प्रत्येक से क्रियाकलाप 8.2 दोहराकर इसकी जाँच कीजिए। क्या आप दोलनकालों में कोई अंतर पाते हैं?

सरल लोलक का दोलनकाल इसकी लंबाई पर निर्भर करता है किंतु गोलक के द्रव्यमान पर नहीं। किसी एक स्थान पर एक ही लंबाई के सभी लोलकों का दोलनकाल समान होता है।

किसी निश्चित लंबाई के सरल लोलक का एक ही स्थान पर दोलनकाल नियत होता है। लोलक के इस गुण का उपयोग समय के मापन के लिए किया जाता है।

सभी घड़ियाँ चाहे वे पुरानी हों या नईं, किसी न किसी ऐसे सतत आवर्ती प्रक्रम पर आधारित होती हैं जिसका उपयोग समान समयाविधयों को अंकित करने के लिए किया जा सकता है।

आधुनिक घड़ियों में भी समय-मापन के उसी आधारभूत सिद्धांत (किसी निश्चित अविध के पश्चात दोहराए जाने वाले प्रक्रम) का उपयोग किया जाता है किंतु ये या तो किसी क्वार्ट्ज मणिभ के (क्वार्ट्ज घड़ियों में) अथवा किसी विशिष्ट परमाणु के (परमाणु घड़ियों में) सूक्ष्म एवं अत्यंत द्रुत कंपनों का उपयोग करती हैं। हाइगेन्स की पुरानी लोलक घड़ियों के प्रतिदिन 10 सेकंड आगे या पीछे हो जाने की संभावना रहती थी। जबिक आज की परमाणु घड़ियाँ इतनी परिशुद्ध होती हैं कि उनमें लाखों सालों में मात्र 1 सेकंड का अंतर आता है। वैज्ञानिक समय को अधिकाधिक यथार्थता से मापने के लिए और अधिक श्रेष्ठ विधियों की खोज में लगातार लगे हुए हैं।

चित्र 8.8—सामान्यत: प्रयोग में आने वाली कुछ घड़ियाँ

8.1.2 समय का SI मात्रक

समय का SI मात्रक सेकंड है। इसका प्रतीक s है। समय के अपेक्षाकृत बड़े मात्रक मिनट (min) एवं घंटा (h) हैं।

60 सेकंड = 1 मिनट

60 मिनट = 1 घंटा

समय के मात्रकों और उनके प्रतीकों को लिखने के कुछ मानक नियम हैं; अंग्रेजी भाषा में सभी वर्ण बड़े और छोटे अक्षरों में अलग-अलग लिखे जाते हैं। अत: समय के मात्रकों जैसे सेकंड, मिनट, घंटा आदि को जब अंग्रेजी में लिखते हैं तो ये सभी छोटे अक्षरों में लिखे जाते हैं। यदि ये वाक्य के प्रारंभ में आएँ तो नाम का पहला वर्ण बड़े अक्षर से लिखा जाएगा। इनके संकेत s, min, h भी छोटे अक्षरों से ही लिखे जाएँगे और ये सदैव एक वचनात्मक रहेंगे। वाक्य के अंत के अतिरिक्त अन्यत्र संकेतों के बाद कहीं भी बिंदु (पूर्ण विराम) नहीं लगाया जाता है। समय का माप लिखते समय संख्या और मात्रक के बीच में सदैव एक अक्षर की चौड़ाई जितना रिक्त स्थान छोड़ना चाहिए। इस बात पर भी ध्यान दें कि सेकंड के लिए से. या sec लिखना और घंटे के लिए घं. या hrs लिखना सही नहीं है।

घटिका-यंत्र के पात्र में छिद्र ऐसा बनाया गया था कि इसको भरने और डूबने में 24 मिनट लगते थे। इस घड़ी द्वारा मापे गए इस समय को एक मात्रक माना जाता था जिसे घटिका अथवा घटी नाम दिया गया था। यह समय का मानक मात्रक बन गया था जो उन्नीसवीं शताब्दी के अंत तक प्रचलन में रहा। इस प्रकार 24 घंटे का दिन 60 समान घटियों में विभाजित किया गया था।

चित्र 8.9—दीवार घड़ी

क्रियाकलाप 8.3 — आइए, पहचानें

- ❖ चित्र 8.9 में दर्शाई गई दीवार-घड़ी को ध्यानपूर्वक देखिए। आप इसके द्वारा छोटे से छोटे कितने समय-अंतराल को माप सकते हैं?
 - 1 सेकंड वह न्यूनतम समय-अंतराल है जिसे इस घड़ी के द्वारा मापा जा सकता है।

विज्ञान एवं समाज

आज के जगत में एक सेकंड के सूक्ष्म अंशों का मापन भी बहुत महत्वपूर्ण हो गया है। उदाहरण के लिए दौड़ प्रतियोगिताओं में विजेता सुनिश्चित करने के लिए प्रयुक्त समय मापक यंत्र सेकंड के सौवें भाग और यहाँ तक कि हजारवें भाग (अर्थात मिली सेकंड) तक को भी अभिलेखित कर सकते हैं। चिकित्सा क्षेत्र में स्वास्थ्य संबधी समस्याओं के संसूचन के लिए जैसे हृदय-गित को मॉनीटर करने वाली ई.सी.जी. मशीन हृदय स्पंदनों में मिली सेकंड में हुए परिवर्तनों का भी मापन करती है। संगीत में डिजिटल अभिलेखन करते समय ध्विन का प्रग्रहण प्रति सेकंड हजारों बार किया जाता है ताकि इसका श्रवण करते समय सतत मधुर ध्विन प्राप्त हो।

अनेक उपकरणों में इससे भी छोटी समयाविधयों का प्रयोग होता है जैसे कि स्मार्टफोन और कंप्यूटर में सिग्नलों का प्रक्रमण माइक्रोसेकंड (1 सेकंड के दस लाखवें भाग) में किया जाता है जिससे वे अत्यंत तीव्र पिरचालित होते हैं। अंतिरक्ष अनुसंधान, चिकित्सा क्षेत्र तथा उन्नत विज्ञान प्रयोगों के लिए इनसे भी अधिक पिरशुद्ध समय-मापी उपकरणों का विकास करने में वैज्ञानिक लगे हुए हैं। हमारी घड़ियाँ जितनी शीघ्रता के साथ यथार्थ समय बताएँगी, उतनी ही वे समाज की ऐसे-ऐसे तरीकों से सहायता करेंगी जिनके बारे में हमने सोचा भी नहीं होगा।

समान दूरी की दौड़ के लिए समय माप कर हम यह बता सकते हैं कि कौन अधिक तेज दौड़ा। किंतु अलग-अलग दूरियों की दौड़ों की तुलना करनी हो तो हम यह किस प्रकार बता पाएँगे?

8.2 धीमा या तेज

जब हम कहते हैं कि किसी वस्तु की गति धीमी है या तेज है तो हमारा क्या अभिप्राय होता है? मान लीजिए कि आप एक सरल रेखीय धावन-पथ पर 100 मीटर की दौड़ देख रहे हैं। सभी धावक आरंभ रेखा से एक साथ दौड़ना प्रारंभ करते हैं। परंतु कुछ समय के पश्चात वे आगे-पीछे हो जाते हैं (चित्र 8.10)। हम किस प्रकार निर्णय करते हैं कि उनमें से कौन अधिक तेज दौड रहा है?

चित्र 8.10—एक सीधे पथ पर दौड़ लगाते हुए धावक

किसी क्षण पर जो धावक अन्य सभी से आगे है, वह उन सभी से सबसे तेज दौड़ रहा है। अतः वह व्यक्ति जिसने समान समय में अधिक दूरी तय की है वह अधिक तेज धावक है।

दिए गए समय-अंतराल में विभिन्न व्यक्तियों द्वारा चली गई दूरियाँ यह बताती हैं कि उनमें से कौन तेज चल रहा है और कौन धीमा। प्राय: हम यह कहते हैं कि तेज दोड़ने वाले व्यक्ति की चाल अधिक थी। संभवत: आप 'चाल' शब्द से परिचित हैं।

8.3 चाल

दो या दो से अधिक वस्तुओं द्वारा इकाई समय में चली गई दूरियों की तुलना करके यह पता लगाया जा सकता है कि उनमें से कौन सी वस्तु अधिक तेज चल रही है। इकाई समय एक सेकंड, एक मिनट अथवा एक घंटा हो सकता है। किसी वस्तु द्वारा इकाई समय में चली गई दूरी को उस वस्तु की 'चाल' कहा जाता है।

हम किसी वस्तु की चाल कैसे ज्ञात कर सकते हैं? यदि हमें किसी वस्तु द्वारा चली गई कुल दूरी और उस दूरी को तय करने में लगा समय ज्ञात हो तो उसकी चाल का परिकलन किया जा सकता है। किसी वस्तु की चाल उसके द्वारा चली गई कुल दूरी को उस दूरी को चलने में लगे कुल समय से विभाजित करने पर प्राप्त होती है।

अतः

चाल का मात्रक क्या होगा? लंबाई और समय के SI मात्रक हमें ज्ञात हैं। चाल क्योंकि दूरी/समय है, चाल का SI मात्रक मीटर/सेकंड है और इसे m/s द्वारा व्यक्त किया जाता है।

चाल को अन्य मात्रकों में भी व्यक्त किया जा सकता है। यदि हम दूरी को किलोमीटर में और समय को घंटे में व्यक्त करें तो चाल का मात्रक किलोमीटर/घंटा होगा जिसे km/h द्वारा व्यक्त किया जाएगा।

उदाहरण 8.1 — स्वाति का विद्यालय उसके घर से 3.6 km की दूरी पर है। साइकिल चलाकर वह अपने घर से विद्यालय तक 15 मिनट में पहुँचती है। उसकी साइकिल की चाल को m/s

-🍫 इंटरनेट पर रेलवे समय सारणी का अवलोकन कीजिए।

क्रियाकलाप 8.4 — आइए, परिकलन करें

- आप जिस स्थान पर रहते हैं उसके निकटतम रेलवे स्टेशन पर रुकने वाली किसी रेलगाड़ी की पहचान कीजिए।
- आगे के जिस स्टेशन पर यह रेलगाड़ी रुकती है उसके नाम का पता लगाइए। रेलवे समय सारणी से उस स्टेशन की दूरी भी ज्ञात कीजिए।
- रेलगाड़ी का आपका स्टेशन छोड़ने और अगले स्टेशन पर पहुँचने का समय भी रेलवे समय सारणी देख कर अभिलेखित कीजिए। इन दोनों स्टेशनों की बीच की दूरी तय करने में रेलगाड़ी द्वारा लिए जाने वाले समय का परिकलन करने के लिए इन दो समय मानों का अंतर निकालिए।
- इन दो स्टेशनों के बीच रेलगाड़ी की चाल का परिकलन कीजिए तथा तालिका 8.2 में अभिलेखित कीजिए।
- चार से पाँच विभिन्न प्रकार की रेलगाड़ियों (जैसे सवारी गाड़ी या एक्सप्रेस गाड़ी या सुपर फास्ट गाड़ी) के लिए इस क्रियाकलाप को दोहराइए।

तालिका 8.2 — रेलगाड़ियों की चाल ज्ञात करना

आपके घर के निकटतम रेलवे स्टेशन का नाम

क्र.सं.	रेलगाड़ी का नाम	अगले स्टेशन का नाम	अगले स्टेशन की दूरी (km)	अगले स्टेशन तक जाने में लगा समय (h)	इन दो स्टेशनों के बीच रेलगाड़ी की चाल (km/h)

रेलगाड़ियों की चालों की तुलना कीजिए। इनमें सबसे तेज चलने वाली रेलगाड़ी कौन-सी है?

वह रेलगाड़ी जो इकाई समय में सबसे अधिक दूरी तय करती है अर्थात जिसकी चाल सबसे अधिक है, वह सबसे तेज चलने वाली रेलगाड़ी है।

8.3.1 चाल, दूरी एवं समय में संबंध

अब हम जान गए हैं कि निम्नलिखित सूत्र का उपयोग करके किसी वस्तु की चाल का परिकलन कैसे किया जाता है—

यदि चली गई दूरी और चलने में लिया गया समय ज्ञात हो तो चाल का परिकलन किया जा सकता है। यदि किसी वस्तु की चाल और समय ज्ञात हो तो इसके द्वारा चली गई दूरी का परिकलन निम्नलिखित सूत्र का उपयोग करके किया जा सकता है—

कुल चली गई दूरी = चाल × चलने में लिया गया कुल समय

यदि वस्तु की चाल और चली गई दूरी ज्ञात हो तो उस दूरी को चलने में वस्तु द्वारा लिया गया कुल समय निम्नलिखित सूत्र द्वारा परिकलित किया जा सकता है—

उदाहरण 8.2—राघव एक बस में बैठकर निकट के एक शहर जा रहा है। बस लगातार 50 km/h की चाल से चल रही है। यदि उसको उस शहर तक पहुँचने में 2 h लगते हैं तो वह शहर कितनी दूरी पर है?

हल — बस द्वारा चली गई दूरी = चाल
$$\times$$
 समय = $50 \frac{\text{km}}{\text{k}'} \times 2\text{k}'$ = 100 km

उदाहरण 8.3 — कोई रेलगाड़ी 90 km/h की चाल से गतिमान है। इसे 360 km की दूरी तय करने में कितना समय लगेगा?

अभी तक दिए गए सभी उदाहरणों में हमने किसी वस्तु की चाल, कुल चली गई दूरी को चलने में लिए गए कुल समय से विभाजित करके प्राप्त की है। तथापि यह हो सकता है कि वस्तु संपूर्ण दूरी समान चाल से न चली गई हो। हो सकता है कि कभी यह तेज चली हो और कभी धीमी। अत: हमने जो चाल ज्ञात की है वह औसत चाल है। किंतु इस पुस्तक में हमने 'औसत चाल' के लिए 'चाल' शब्द का ही उपयोग किया है।

विज्ञान एवं समाज

स्कूटर, मोटर साइकिल, कार एवं बस जैसे वाहनों में एक यंत्र लगा होता है जो वाहन की चाल मापता है तथा km/h में प्रदर्शित करता है। इसे चालमापी (स्पीडोमीटर) कहा जाता है। वाहनों में एक अन्य यंत्र भी लगा रहता है जिसे पथमापी (ओडोमीटर) कहते हैं। यह वाहन द्वारा चली गई दूरी को किलोमीटर में मापता है।

मैंने एक बार एक सीधी सड़क पर लंबी दौड़ (मैराथन) के एक भाग को देखा। मुझे ऐसा लगा कि कुछ व्यक्ति उस पूरी दूरी में समान चाल से दौड़ रहे थे जबिक कुछ अन्य व्यक्ति या तो अपनी चाल धीमी कर रहे थे या बढ़ा रहे थे। उनकी गित भिन्न कैसे थी?

8.4 एकसमान एवं असमान रेखीय गति

आपने कक्षा 6 में विज्ञान की पाठ्यपुस्तक जिज्ञासा के अध्याय 'लंबाई एवं गित का मापन' में रेखीय गित के संबंध में जो सीखा था, क्या आपको वह याद है? जब कोई वस्तु एक सरल रेखा के अनुदिश गित करती है तो इसकी गित को सरल रेखीय गित कहा जाता है। अब आप एक रेलगाड़ी की कल्पना कीजिए जो आस-पास के दो स्टेशनों के बीच ऐसी पटिरयों पर चल रही है जो सीधी रेखा में हैं। इसलिए इन दो स्टेशनों के बीच रेलगाड़ी की गित (चित्र 8.11) सरल रेखीय गित का उदाहरण है। रेलगाड़ी पहले स्टेशन 'क' से मंद गित से चलना प्रारंभ करती है

और फिर इसकी चाल बढ़ जाती है। फिर यह धीमी होती है और अगले स्टेशन 'घ' पर रुक जाती है। इन दो स्टेशनों के बीच कुछ दूरी के लिए (ख से ग तक) यह नियत चाल अर्थात अपरिवर्तित चाल से चलती है।

चित्र 8.11—सीधी पटरियों पर एक रेलगाडी

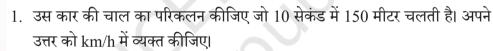
नियत चाल से सरल रेखा में गितमान वस्तु के लिए कहा जाता है कि यह एकसमान रेखीय गित कर रही है। अत: यह रेलगाड़ी 'ख' और 'ग' के बीच एकसमान रेखीय गित में है (चित्र 8.11)। वहीं, यदि कोई वस्तु जो एक सरल रेखा में तो चल रही है परंतु अपनी चाल बदलती रहती है तो इसकी गित को असमान रेखीय गित कहा जाता है। रेलगाड़ी की गित 'क' और 'ख' तथा 'ग' और 'घ' के बीच असमान है (चित्र 8.11)।

कोई वस्तु जब एकसमान रेखीय गित करती है तो यह समान समय-अंतरालों में समान दूरियाँ तय करती है जबिक असमान रेखीय गित में यह समान समय-अंतरालों में भिन्न-भिन्न दूरियाँ तय करती है। दो रेलगाड़ियों X एवं Y द्वारा प्रात: 10:00 बजे और 11:00 बजे के बीच चली गई दूरियों के आँकड़े तालिका 8.3 में दिए गए हैं।

I				S	7. 7.	_	1	0				0	ٺ
١	तालिका 8.3—1) ामन	ट क समान सम	य-अतराल	11 म	दा	रलग	गड़र	ग्रा द्वार	ा चला	गइ	दार	या

	रेलग	ाड़ी X	रेलगाड़ी Y			
समय (पूर्वाहन)	स्थिति (km)	दूरी (km)	स्थिति (km)	दूरी (km)		
10:00	0	0	0	0		
10:10	20	20	20	20		
10:20	40	20	35	15		
10:30	60	20	50	15		
10:40	80	20	75	25		
10:50	100	20	95	20		
11:00	120	20	120	25		

इनमें से कौन-सी रेलगाड़ी 10:00 और 11:00 बजे के बीच एकसमान रेखीय गति में है? रेलगाड़ी X समान समय अंतराल में समान दूरी तय करती है। इसलिए यह एकसमान रेखीय गति में है जबिक रेलगाड़ी Y असमान रेखीय गति में है।


एकसमान रेखीय गति एक आदर्श अवधारणा है। अपने दैनिक जीवन में हमें कठिनाई से ही कोई ऐसी वस्तु मिलती है जिसकी चाल लंबी दूरियों तक या दीर्घकाल के लिए अचर बनी रहती है। यही कारण है कि हमें औसत चालों का उपयोग करना पडता है।

संक्षेप में

- लोलक द्वारा एक दोलन पूरा करने में लिया गया समय उसका दोलनकाल कहलाता है।
- किसी स्थान पर एक निश्चित लंबाई के किसी लोलक का दोलनकाल अचर रहता है।
- समय का SI मात्रक सेकंड है। इसका प्रतीक 's' है।
- ❖ किसी वस्तु की औसत चाल इस वस्तु द्वारा चली गई कुल दूरी को इसके द्वारा इस दूरी को चलने में लिए गए कुल समय से विभाजित करने पर प्राप्त होती है।
- सरल रेखा में नियत चाल से चलती हुई वस्तु एकसमान रेखीय गति में कही जाती है।
- ❖ यदि सरल रेखा में चलते हुए किसी वस्तु की चाल बदलती रहती है तो यह असमान रेखीय गति में कही जाती है।

आइए, और अधिक सीखें

- 2. एक धावक 50 सेकंड में 400 मीटर की दूरी तय करता है। कोई दूसरा धावक यही दूरी 45 सेकंड में पूरी करता है। किसकी चाल अधिक है और कितनी अधिक है?
- 3. एक रेलगाड़ी 25 m/s की चाल से चलती है और 360 km की द्री तय करती है। इसे यह दूरी तय करने में कितना समय लगता है?
- 4. कोई रेलगाड़ी 3 घंटे में 180 km की दूरी तय करती है। इसकी चाल का परिकलन कीजिए-
 - (i) km/h में
 - (ii) m/s में
 - (iii) यदि रेलगाड़ी अपनी संपूर्ण यात्रा में समान चाल बनाए रखती है तो 4 घंटे में यह कितनी दूरी तय करेगी?
- 5. सबसे अधिक चाल से चौकड़ी भरता हुआ घोड़ा लगभग 18 m/s तक की चाल प्राप्त कर सकता है। 72 km/h की चाल से गतिमान रेलगाड़ी की तुलना में यह कम है या अधिक है?
- 6. एक यातायात विहीन सरल रेखीय राजमार्ग पर गतिमान कार तथा एक अन्य कार जो शहर के यातायात के बीच चल रही है, इन दोनों का उदाहरण लेते हुए एकसमान एवं असमान गति के बीच विभेद कीजिए।

किसका

क्या होगा

क्या होना

क्यों

नही

118

7. विभिन्न समय-अंतरालों में किसी वस्तु द्वारा चिलत दूरियों के आँकड़े तालिका में दिए गए हैं। यदि वस्तु एकसमान गित में है तो तालिका में छोड़े गए रिक्त स्थानों की पूर्ति कीजिए—

समय(s)	0	10	20	30		50	70
दूरी(m)	0	8		24	32	40	56

- 8. कोई कार अपनी यात्रा के पहले घंटे में 60 km, दूसरे घंटे में 70 km और तीसरे घंटे में 50 km की दूरी तय करती है। क्या इसकी गति एकसमान है? अपने उत्तर का औचित्य बताइए। कार की औसत चाल का परिकलन कीजिए।
- 9. दैनिक जीवन में हमें सामान्यतः किस प्रकार की गति दृष्टिगत होती है—एकसमान गित अथवा असमान गित? अपने अनुभव के आधार पर अपने उत्तर के समर्थन में तीन उदाहरण दीजिए।
- 10. तालिका में किसी वस्तु की गति संबंधी आँकड़े दिए गए हैं। बताइए कि वस्तु की चाल एकसमान है अथवा असमान। उसकी औसत चाल ज्ञात कीजिए।

समय(s)	0	10	20	30	40	50	60	70	80	90	100
दूरी(m)	0	6	10	16	21	29	35	42	45	55	60

11. कोई वाहन एक सरल रेखा के अनुदिश गतिमान है और यह 2 km की दूरी तय करता है। पहले 500 m यह 10 m/s की चाल से चलता है और अगले 500 m यह 5 m/s की चाल से चलता है। शेष बची दूरी इसको कितनी चाल से चलना चाहिए जिससे इसकी पूरी यात्रा 200 s में समाप्त हो जाए? पूरी यात्रा के लिए वाहन की औसत चाल कितनी है?

अन्वेषणात्मक परियोजनाएँ

- एक प्लवमान पात्र प्रकार की जल-घड़ी बनाइए। विभिन्न आमाप के पात्र लेकर और उनमें विभिन्न आमाप के छिद्र बना कर प्रयोग कीजिए जिससे कि एक ऐसा पात्र मिल जाए जो लगभग 24 मिनट में डूब जाता हो।
- अपने मित्रों की नाड़ी स्पंदन दर (वह संख्या जो यह बताती है कि एक मिनट में किसी व्यक्ति की नाड़ी कितनी बार धड़कती है) के मापन के लिए एक क्रियाकलाप कीजिए। एक ऐसे क्रियाकलाप का विचार कीजिए जिसमें समय मापन के लिए आप अपनी नाड़ी का उपयोग कर सकते हों और इस विचार को लेकर एक कहानी विकसित कीजिए।
- ❖ क्रियाकलाप 8.2 में लोलक की एक ही लंबाई के लिए दोलनकाल के पाठ्यांकों में मामूली अंतर के क्या कारण हो सकते हैं? इसको कम करने की विधियों पर विचार कीजिए और उनका उपयोग करते हुए क्रियाकलाप को दोहराइए और जाँचिए कि क्या पाठ्याँकों में भिन्नता कम होती है।

- ❖ एक खेल के मैदान में जाइए जहाँ कुछ झूले लगे हों। िकसी झूले के 10 दोलनों में लगा समय मापिए और इसके दोलनकाल का परिकलन की जिए। इस क्रियाकलाप को अलग-अलग भार के बच्चे को झूले में बैठाकर दोहराइए और देखिए िक क्या दोलनकाल का माप प्रत्येक बार लगभग समान होता है? अलग-अलग लंबाई के झूलों के साथ प्रयोग दोहराइए और पता लगाइए िक झूले की लंबाई में वृद्धि से उसका दोलनकाल िकस प्रकार परिवर्तित होता है? क्या झूला भी लोलक का एक उदाहरण है?
- ❖ पिछले दो ओलंपिक खेलों में पुरूष एवं महिला धावकों द्वारा विभिन्न प्रकार की (100 m, 200 m एवं 400 m) दौड़ों के विजेताओं द्वारा उनकी दौड़ में लिए गए समय के आँकड़े एकत्रित कीजिए। उनकी चालों का परिकलन कीजिए और उनकी आपस में तुलना कीजिए। किस प्रकार की दौड़ में चाल अधिकतम रही?

समय का आरंभ हमारे ब्रह्माण्ड के सृजन के साथ ही हुआ और भविष्य में यह चलता रहेगा। हम समय को ना तो देख सकते हैं और ना ही इसकी अनुभूति कर सकते हैं परंतु हम इसके प्रवाह को दो घटनाओं के मध्य के समय-अंतराल के पदों में माप सकते हैं। ये समय-अंतराल एक सेकंड का अंश, दिन, महीने, वर्ष अथवा शताब्दियाँ भी हो सकती हैं। हम केवल यह बता सकते हैं कि कोई घटना कब हुई और कितनी देर तक हुई। यद्यपि हमने समय को अधिकाधिक यथार्थता के साथ मापना सीख लिया है और हमारे जीवन विभिन्न प्रकार की घड़ियों द्वारा नियंत्रित होने लगे हैं फिर भी 'समय क्या है?' यह प्रश्न एक गूढ़ पहेली बना हुआ है जिसका कोई सरल उत्तर नहीं है।

