

- पत्थरों या रेत का ढेर लगाना संभव होता है परंतु जल जैसे किसी द्रव का नहीं। ऐसा क्यों?
- अंजिल में जल भरने पर जल उसी आकार का हो जाता है परंतु अंजिल से छोड़े जाने पर जल का यह आकार परिवर्तित क्यों हो जाता है?
- हम वायु को नहीं देख सकते फिर भी वह फूले हुए गुब्बारे के भार में वृद्धि कैसे कर देती है?
- वर्तमान में हम जिस वायु में श्वास लेते हैं क्या हजारों वर्ष पूर्व भी यह ऐसी ही थी?
- अपने प्रश्नों को साझा कीजिए

AUL 6.1

My Threw Day Mar Sal

आपने नदी या समुद्र के किनारे खेलते हुए रेत से कंकड़ और पत्थर एकत्रित किए होंगे। क्या आपने विचार किया कि ये कंकड़, पत्थर और रेत कहाँ से आते हैं?

अपरदन के कारण पर्वतों की चट्टानें धीरे-धीरे टूटती रहती हैं। इन पर्वतों से बहने वाली निदयाँ चट्टानों के इन अपरिदत टुकड़ों को अपने साथ बहा ले जाती हैं। जैसे-जैसे निदयाँ प्रवाहित होती जाती हैं वैसे-वैसे वे चट्टानों को छोटे कंकड़ों, पत्थरों एवं रेत के रूप में तोड़ती रहती हैं और उनकी वृहत मात्रा को मैदानों तक बहाकर ले जाती हैं।

अंतत: बड़ी चट्टानें रेत और मिट्टी के महीन कणों के रूप में विघटित हो जाती हैं। क्या ये कण किसी बड़ी चट्टान की सबसे छोटी इकाई है या रेत और मिट्टी के इन कणों को और भी तोड़ा जा सकता है?

आइए, पता लगाएँ!

<u>7.1 द्रव्य किससे बना होता है?</u>

क्रियाकलाप 7.1— आइए, खोज करें

- चॉक (खड़िया) का एक टुकड़ा लीजिए (चित्र 7.1, क) और इसे दो टुकड़ों में तोड़ लीजिए (चित्र 7.1, ख)
- चॉक को तब तक तोड़ते रहिए जब तक इसे हाथों से और तोड़ना कठिन न हो जाए।
- इस प्रकार प्राप्त चॉक के छोटे टुकड़ों को ओखल और मूसल में पीसकर चूर्ण बना लीजिए (चित्र 7.1, ग)।
- चॉक के इस महीन चूर्ण का आवर्धक लेंस से अवलोकन कीजिए (चित्र 7.1, घ)।
- आप क्या देखते हैं?
- क्या दिखाई देने वाला प्रत्येक कण अभी भी चॉक का ही कण है?

क्या चॉक के इस महीन चूर्ण का प्रत्येक कण अभी भी उसी पदार्थ का बना हुआ है या यह तोड़ने या पीसने पर किसी और पदार्थ में परिवर्तित हो गया है?


कक्षा 7 की पाठ्यपुस्तक जिज्ञासा के अध्याय 'हमारे आस-पास के परिवर्तन— भौतिक एवं रासायनिक' का पुनः स्मरण कीजिए। चॉक को पीसना एक भौतिक परिवर्तन है या रासायनिक परिवर्तन? उपर्युक्त क्रियाकलाप में आपने सीखा कि चॉक को पीसने पर यह किसी नए पदार्थ में परिवर्तित नहीं होता है। अत: यह एक भौतिक परिवर्तन है जिसमें चॉक के प्रत्येक कण का मात्र आकार ही और छोटा होता जाता है।

...

(ग)

चित्र 7.1— (क) चॉक का टुकड़ा (ख) चॉक के टुकड़े का दो भागों में टूटना (ग) महीन चूर्ण के रूप में पिसा हुआ चॉक का टुकड़ा (घ) चॉक के चूर्ण का आवर्धक लेंस द्वारा समीप से अवलोकन

चॉक के चूर्ण के इन कणों को और अधिक पीसने पर सूक्ष्म कणों में तोड़ा जा सकता है। आइए, कल्पना करें कि पीसने की यह प्रक्रिया निरंतर चलती रहती है। अंततः हम एक ऐसी स्थिति पर पहुँच जाएँगे जब चॉक के कणों को और अधिक तोड़ा नहीं जा सकता है। इस स्थिति में प्राप्त सूक्ष्म कण वे मूल निर्माण इकाई हैं जिनसे चॉक निर्मित था।

क्या इस प्रकार प्राप्त चॉक के सूक्ष्म कण चॉक की सबसे छोटी इकाइयाँ माने जा सकते हैं? इसका अर्थ है कि चॉक का एक पूरा टुकड़ा छोटी इकाइयों (सूक्ष्म कणों) की बृहत संख्या द्वारा निर्मित था। ये इकाइयाँ चॉक के घटक कण कहलाती हैं। घटक कण वे मूल इकाई हैं जिनसे

किसी पदार्थ या सामग्री के बड़े टुकड़े का निर्माण होता है। चॉक की भाँति ही रेत और मिट्टी के कण बड़ी चट्टानों की सबसे छोटी ईकाइयाँ नहीं होते हैं। ये चट्टानें उनके घटक कणों की एक वृहत संख्या से बनी हुई होती हैं।

आइए, और आगे खोजें!

चीनी को जल में घोलकर विलयन बनाने की प्रक्रिया को स्मरण करें। जब जल में चीनी को घोला जाता है तो क्या होता है?

क्रियाकलाप 7.2— आइए, करके देखें

स्रक्षा सर्वोपरि

इस क्रियाकलाप को शिक्षक अथवा किसी वयस्क के मार्गदर्शन में करें। किसी भी वस्तु या पदार्थ को तब तक खाएँ एवं पिएँ नहीं जब तक कि ऐसा करने के लिए कहा नहीं जाए।

- काँच के एक गिलास में पेय जल भरिए।
- इसमें दो छोटे चम्मच चीनी डालिए।
- जल को विलोडित न करें। गिलास में से जल की सबसे ऊपरी सतह से एक छोटा चम्मच जल लेकर उसका स्वाद चखिए।

क्या यह जल स्वाद में मीठा लगता है?

- अब जल को तब तक विलोडित कीजिए जब तक कि चीनी इसमें पूर्णतया घुल न जाए (चित्र 7.2)।
- पुन: सबसे ऊपरी सतह से एक चम्मच जल लेकर चिखए।
 आपको स्वाद में क्या अंतर लगा? क्या यह स्वाद में मीठा है?

यद्यपि चीनी को घोलने के उपरांत जल की ऊपरी सतह मीठी लगती है अतः यह मिठास पूरे विलयन में होनी चाहिए। क्या आपको विलयन में चीनी का कोई कण दिखाई दे रहा है?

चीनी के कणों को देखा नहीं जा सकता है परंतु उन कणों के विद्यमान होने का बोध स्वाद द्वारा किया जा सकता है। जब चीनी जल में घुलती है तब यह अपने उन घटक

चित्र 7.2 — जल में चीनी का घुलन

कणों में टूट जाती है जिन्हें और विघटित नहीं किया जा सकता है। चीनी का प्रत्येक छोटा दाना ऐसे ही लाखों घटक कणों से निर्मित होता है।

क्रियाकलाप 7.1 और 7.2 इस विचार को आधार प्रदान करते हैं कि कोई भी द्रव्य अति सूक्ष्म कणों की बहुत अधिक संख्या से निर्मित होता है। ये कण इतने छोटे होते हैं कि उन्हें किसी सामान्य सूक्ष्मदर्शी द्वारा भी देखा नहीं जा सकता है।

चीनी के छोटे-छोटे कण परस्पर पृथक हो जाते हैं और जल के कणों के बीच उपलब्ध स्थानों में चले जाते हैं। कणों के बीच के इन स्थानों को अंतराकणीय स्थान कहते हैं।

> चॉक और चीनी दोनों को उनके घटक कणों में तोड़ा जा सकता है परंतु इनके जिन ठोस टुकड़ों को हम देखते हैं उनमें ये घटक कण परस्पर किस प्रकार जुड़े होते हैं।

7.2 द्रव्य की विभिन्न अवस्थाएँ कैसे निर्धारित होती हैं?

द्रव्य के घटक कण आपस में आकर्षण बल द्वारा जुड़े हुए होते हैं। ये बल अंतराकणीय आकर्षण कहलाते हैं। इन आकर्षण बलों की प्रबलता पदार्थ की प्रकृति एवं अंतराकणीय दूरी पर निर्भर करती है। कणों की दूरी में अल्प वृद्धि भी अंतराकणीय बलों को अत्यधिक कम कर देती है। इन बलों की प्रबलता ही अंतत: पदार्थों की भौतिक अवस्था को निर्धारित करती है।

हमारी वैज्ञानिक परंपरा

क्या आप जानते हैं कि प्राचीनकाल से लोग इस विषय पर विचार कर रहे हैं कि वस्तुओं को किस सीमा तक तोड़ा जा सकता है एवं द्रव्य का निर्माण किससे हुआ है?

प्राचीन भारतीय दार्शनिक आचार्य कणाद ने सर्वप्रथम परमाणु की अवधारणा के विषय में चर्चा की। इनके अनुसार द्रव्य का निर्माण सूक्ष्म अविभाज्य शाश्वत कणों से हुआ है जिन्हें 'परमाणु' कहा जाता हैं। यह विचार उनके *वैशेषिक सूत्र* नामक ग्रंथ में वर्णित है।

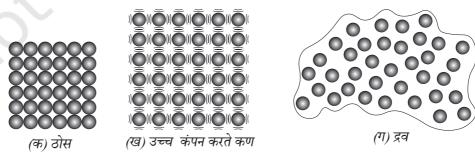
आइए, यह खोजने का प्रयास करें कि विभिन्न अवस्थाओं में ये आकर्षण किस प्रकार भिन्न हैं।

7.2.1 ठोस अवस्था

ठोस पदार्थों में घटकों के कण परस्पर किस प्रकार जुड़े हुए होते हैं?

क्रियाकलाप 7.3— आइए, पता लगाएँ

चित्र 7.3 — कुछ ठोस वस्तुएँ


- कुछ ठोस वस्तुएँ, जैसे— लोहे का टुकड़ा या लोहे की कील, सेंधा नमक का एक टुकड़ा, एक पत्थर, लकड़ी का एक गुटका, एक चाबी और ऐलुमिनियम का एक टुकड़ा एकत्रित कीजिए (चित्र 7.3)।
- उपर्युक्त सभी वस्तुओं की आकृतियों एवं आकार का ध्यानपूर्वक अवलोकन कीजिए।
- अब एक-एक कर सभी ठोस वस्तुओं को हथौड़े से पीटिए।
- आपके अनुसार उपर्युक्त दी गई छ: वस्तुओं में से किस वस्तु में कण आपस में प्रबलता से जुड़े हैं?

आपने ध्यान दिया होगा कि ये सभी वस्तुएँ ठोस हैं। इनकी एक

निश्चित आकृति और आयतन है। ऐसा इसलिए संभव है कि ठोस पदार्थों में कण दृढ़ता से संकुलित होते हैं और इनमें अंतराकणीय आकर्षण बल अत्यंत प्रबल होते हैं।

क्या ठोस अवस्था में इन कणों को पृथक करने का कोई उपाय है? ये प्रबल आकर्षण बल कणों को उनकी नियत स्थितियों पर रखते हैं और उन्हें स्वतंत्र रूप से गति करने से रोकते हैं (चित्र 7.4, क)। ये कण केवल अपनी स्थिति से इधर उधर गति (कंपन या दोलन) कर सकते हैं परंतु एक स्थान से दूसरे स्थान पर नहीं जा सकते हैं।

जब ठोस पदार्थों को गरम किया जाता है तब उनके कण अधिक तीव्रता से कंपन करते हैं (चित्र 7.4, ख)। इस प्रक्रिया में एक अवस्था ऐसी आती है जब ये कंपन इतने तीव्र हो जाते हैं कि कण अपना स्थान छोड़ने लगते हैं। कणों के अंतराकणीय बल दुर्बल हो जाते हैं और ठोस पदार्थ, द्रव अवस्था में परिवर्तित हो जाता है (चित्र 7.4, ग)। जिस तापमान पर ऐसा होता है वह उस ठोस का गलनांक कहलाता है।

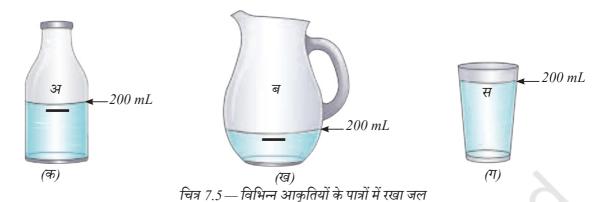
चित्र 7.4 — किसी ठोस के पिघलने पर कणों की व्यवस्था का आवर्धित चित्र

SLINING CONTRACTOR

My Threword Market

वायुमंडलीय दाब पर वह न्यूनतम तापमान जिस पर कोई ठोस पदार्थ पिघल कर द्रव में पिरवर्तित होता है, उसका गलनांक कहलाता है। सामान्यत: द्रव अवस्था में ठोस अवस्था की अपेक्षा कण एक दूसरे से कुछ अधिक दूरी पर होते हैं (बर्फ एक अपवाद है — इसके कण जल के कणों की अपेक्षा एक दूसरे से अधिक दूर होते हैं।)

कुछ ठोस वस्तुओं में अंतराकणीय आकर्षण बल दुर्बल होते हैं अतः उनके गलनांक निम्न होते हैं। जबिक अन्य ठोस वस्तुओं में आकर्षण बल प्रबल होते हैं और उनके गलनांक उच्च होते हैं। तालिका 7.1 में ठोस वस्तुओं के कुछ उदाहरण और उनके गलनांक दिए गए हैं।


तालिका 7.1— कुछ ठोस वस्तुओं के गलनांक

क्र.सं.		सामग्री	गलनांक
1.	बर्फ		0 °C
2.	यूरिया		133 °C
3.	लोहा		1538 °C

7.2.2 द्रव अवस्था

क्रियाकलाप 7.4 — आइए, प्रयास करें और जानें

- विभिन्न आकृतियों के तीन स्वच्छ और शुष्क पात्र लीजिए। उन्हें 'अ', 'ब' और 'स' द्वारा चिह्नित कीजिए (चित्र 7.5)।
- चिह्नक से या कागज की पतली पट्टी चिपकाकर प्रत्येक पात्र पर 200 mL का स्तर चिह्नित कीजिए।
- पात्र 'अ' को चिह्नित स्तर तक जल से भर लीजिए।
- पात्र 'अ' से जल को बिना छलकाए सावधानीपूर्वक पात्र 'ब' में डालिए और जल की आकृति एवं स्तर का ध्यानपूर्वक निरीक्षण कीजिए।
- अब उसी जल को सावधानीपूर्वक पात्र 'ब' से पात्र 'स' में डालिए इसके पश्चात पुन:
 उसकी आकृति एवं स्तर का अवलोकन कीजिए।

आप देखेंगे कि जल जिस पात्र में डाला जाता है वह उसी पात्र की आकृति ग्रहण कर लेता है। अतः हम यह कह सकते हैं द्रवों की निश्चित आकृति नहीं होती है। हम जानते हैं कि द्रव उस पात्र की आकृति ग्रहण कर लेता है जिसमें उसे रखा जाता है। ऐसा इसलिए होता है क्योंकि द्रव के कण गति करने के लिए स्वतंत्र होते हैं। उपर्युक्त तीनों पात्रों में जल का स्तर 200 mL पर रहता है और आयतन में कोई परिवर्तन प्रेक्षित नहीं होता है। अतः हम कह सकते हैं कि द्रवों का आयतन निश्चित होता है। तथापि यदि कोई पात्र स्वच्छ न हो तो जल की कुछ बूँदें उसकी सतह पर ठहर सकती हैं जिसके कारण जल को अगले पात्र में डालने के पश्चात जल का स्तर 200 mL से कुछ कम भी हो सकता है।

चित्र 7.6— जल में अँगुली घुमाते हुए

क्रियाकलाप 7.4 दर्शाता है कि द्रवों के कण स्वतंत्र रूप से गित कर सकते हैं परंतु केवल सीमित स्थान के भीतर ही। अतः हम इस निष्कर्ष पर पहुँच सकते हैं कि द्रवों की आकृति निश्चित नहीं होती है परंतु उनका आयतन निश्चित होता है।

आइए, अब हम द्रवों और ठोस पदार्थों के बीच अंतराकणीय आकर्षण बलों की तुलना करें। एक उथले बर्तन में कुछ जल लीजिए और इस जल में अपनी अँगुली घुमाइए (चित्र 7.6)।

क्या आप जल में अपनी अँगुली घुमा पा रहे हैं?

SLINING WALLEY TO

My Threw Day Mary Color

आप जल को स्थायी रूप से तोड़े या काटे बिना इसमें अपनी अँगुली को सरलतापूर्वक घुमा सकते हैं परंतु ठोस वस्तुओं या पदार्थों में ऐसा नहीं किया जा सकता है। जब आप ऐसा करने का प्रयास करते हैं तब आप जल को अस्थायी रूप से विस्थापित करते हैं। जैसे ही आप अपनी अँगुली हटा लेते हैं तब जल पुनः अपनी पूर्व स्थिति ग्रहण कर लेता है। अत: हम कह सकते हैं कि द्रवों में ठोस पदार्थों की अपेक्षा अंतराकणीय आकर्षण बल दुर्बल होते हैं परंतु तब भी वह इतने प्रबल होते हैं कि कणों को एक-दूसरे के निकट रखते हैं।

कक्षा 6 की पाठ्यपुस्तक जिज्ञासा के अध्याय 'ताप एवं उसका मापन' का पुनः स्मरण कीजिए जहाँ आपने उबलते हुए जल (द्रव) के तापमान का अवलोकन किया था। जब किसी द्रव को निरंतर गरम किया जाता है तब एक ऐसी अवस्था आती है जब जल उबलने लगता है। वायुमंडलीय दाब पर जिस तापमान पर कोई द्रव उबलता है और वाष्प में परिवर्तित होता है वह

तापमान उसका क्वथनांक कहलाता है। कणों की गति इतनी तीव्र हो जाती है कि वे एक दूसरे से दूर जाने लगते हैं जिसके परिणामस्वरूप अंतराकणीय आकर्षण बल कम हो जाते हैं। अंतत: घटक कण द्रव अवस्था से स्वतंत्र हो सकते हैं। इससे द्रव वाष्प अथवा गैस में परिवर्तित हो जाता है।

मैंने देखा है कि पात्र से छलका हुआ जल कुछ समय बाद लुप्त हो जाता है और किसी भी तापमान पर ऐसा ही होता है!

द्रव के क्वथनांक पर वाष्प का निर्माण अति तीव्र गित से होता है और यह न केवल सतह पर होता है अपितु द्रव के भीतर भी होता है। यह प्रक्रिया द्रव में बुलबुलों के निर्माण के रूप में दिखाई देती है। तथापि वाष्प का निर्माण सभी तापमानों पर होता है। यहाँ तक कि क्वथनांक से कम तापमान पर भी धीरे-धीरे और मात्र सतह पर ही वाष्प का निर्माण होता है। यह धीमी प्रक्रिया वाष्पन कहलाती है जिसके विषय में आप पूर्ववर्ती कक्षाओं में पढ़ चुके हैं।

7.2.3 गैसीय अवस्था

क्या गैसों का एक निश्चित आयतन भी होता है?

क्रियाकलाप 7.5— आइए, अन्वेषण करें

- दो पारदर्शी गैस जार या काँच के गिलास लीजिए और उन्हें 'अ' और 'ब' से चिह्नित कीजिए।
- एक अगरबत्ती जलाकर थोड़ा धुआँ उत्पन्न कीजिए।
- धुँए के ऊपर गैस जार 'अ' को उल्टा करके पकड़िए (चित्र 7.7, क)
- गैस जार के भीतर धुँआ भर जाना चाहिए।
- अब गैस जार को सीधा कीजिए और काँच के एक ढक्कन से इसे ढक दीजिए (चित्र 7.7, ख)।
- दूसरे गैस जार 'ब' को उल्टा पकड़िए और इसे गैस जार 'अ' को काँच के ढक्कन के ऊपर रख दीजिए।

अगरबत्ती जलाते समय सावधानी रखिए।

(क) धुँए को एकत्रित करना

(ख) काँच के ढक्कन से गैस जार को ढकना

(ग) गैस जार 'ब' को रखना और काँच के ढक्कन को हटाना

(घ) धुँए का फैलना

चित्र 7.7— धुआँ गैस जारों के भीतर स्वतंत्र रूप से फैलता है।

- काँच के ढक्कन को धीरे से हटाइए और यह सुनिश्चित कीजिए कि दोनों गैस जार एक दूसरे के निकटतम हों एवं धुँए के निकलने का कोई भी स्थान न हो (चित्र 7.7, ग)।
- अवलोकन कीजिए कि धुआँ किस प्रकार गैस जार 'ब' में फैलता है।
- धुआँ गैस जार 'ब' में उपलब्ध संपूर्ण स्थान को भर देता है जिससे यह इंगित होता है कि गैसों का आयतन निश्चित नहीं होता है और वे संपूर्ण उपलब्ध स्थान को घेर लेती हैं (चित्र 7.7, घ)। द्रवों की भाँति गैसें भी उस पात्र की आकृति ग्रहण कर लेती हैं जिसमें वे उपस्थित होती हैं।

यह दर्शाता है कि गैसों में कण सभी दिशाओं में स्वतंत्र रूप से गति करते हैं और उनमें अंतराकणीय आकर्षण नगण्य होते हैं। इसके परिणामस्वरूप गैसों की एक निश्चित आकृति या आयतन नहीं होता है। इस क्रियाकलाप में धुएँ का उपयोग गैसीय

अवस्था को निरूपित करने के लिए किया गया है। वायु में निलंबित धुएँ के सूक्ष्म कणों से गैसों के अदृश्य कण परस्पर टकराते हैं और उनकी गति हमें गैस के कणों की गति का अवलोकन करने में सहायता करती है।

इस क्रियाकलाप को अगरबत्ती के धुएँ के स्थान पर आयोडीन वाष्प के उपयोग के द्वारा भी दर्शाया जा सकता है।

सुरक्षा सर्वोपरि

ठोस आयोडीन का उपयोग करते समय सावधानी रखिए। आयोडीन की वाष्प से जलन हो सकती है। किसी बंद गैस जार में ठोस आयोडीन को कुछ समय तक रखकर आयोडीन वाष्प को प्राप्त किया जा सकता है जैसा कि चित्र 7.8 में दर्शाया गया है।

द्रव और गैसें दोनों ही प्रवाहित होते हैं और उनकी निश्चित आकृति नहीं होती है। ये गुणधर्म इनका ठोस पदार्थों से विभेदन करते हैं और इन्हें तरल के रूप में

वर्गीकृत किया जाता हैं।

चित्र 7.8— गैस जार के भीतर स्वतंत्र रूप से फैलती आयोडीन वाष्प

SLINING WARNEST VELLEN

My The Sandardan Service

7.3 पदार्थ की तीनों अवस्थाओं में अंतराकणीय स्थान किस प्रकार भिन्न होते हैं?

प्रत्येक अवस्था (ठोस, द्रव और गैस) के गुणधर्मों के निर्धारण में अंतराकणीय स्थान की क्या भूमिका रहती है?

आइए, इन प्रश्नों के उत्तर ज्ञात करने के लिए निम्नलिखित क्रियाकलापों को करें।

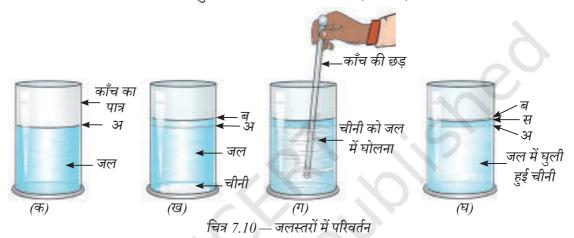
क्रियाकलाप 7.6 — आइए, प्रयोग करें

- बिना सुई की एक सिरिंज लीजिए। सिरिंज के प्लंजर को बाहर की ओर पूर्ण विस्तारित स्थिति में खींचिए (चित्र 7.9, क)।
- सिरिंज के भीतर उपस्थित वायु को बाहर निकलने से रोकने के लिए अपने अँगूठे को सिरिंज के खुले सिरे पर रख दीजिए (चित्र 7.9, ख)।
- प्लंजर को धीरे-धीरे एकसमान गति से अंदर की ओर दबाइए (चित्र 7.9, ग)।

चित्र 7.9— विभिन्न स्थितियों में सिरिंज का प्लंजर

आप क्या अवलोकन करते हैं?

ऐसा करने पर आप देखेंगे कि सिरिंज के अंदर वायु का आयतन कम हो जाता है। हम सिरिंज के अंदर गैस के व्यवहार के विषय में क्या कह सकते हैं?

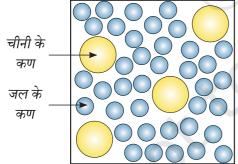

जब आप प्लंजर को दबाकर वायु को संपीडित करते हैं तो कण एक दूसरे के पास आने के लिए बाध्य हो जाते हैं। इससे यह प्रदर्शित होता है कि उनकी सामान्य अवस्था में गैस-कणों के बीच बहुत अधिक स्थान होता है और इस स्थान को बाहरी दाब लगाकर कम किया जा सकता है।

यदि आप प्लंजर को दबाना रोक दें तो गैस के अणु विस्तारित हो जाएँगे और प्लंजर अपनी मूल स्थिति में पुन: आ जाएगा।

इस क्रियाकलाप को जल के साथ दोहराइए और अवलोकन कीजिए। आप देखेंगे कि जल वास्तव में असंपीडय है। आइए, द्रवों में अंतराकणीय स्थानों के विषय में जानने हेतु एक अन्य क्रियाकलाप करें।

क्रियाकलाप 7.7— आइए, अवलोकन करें

- काँच का एक पात्र लीजिए एवं पात्र को जल से लगभग आधा भर दीजिए। इसके साथ ही जल के स्तर को 'अ' द्वारा चिह्नित कर कीजिए (चित्र 7.10, क)।
- इसमें दो छोटे चम्मच चीनी डाल दीजिए।
- काँच के पात्र में प्राप्त नए जल स्तर को 'ब' द्वारा चिह्नित कीजिए (चित्र 7.10, ख)।
- चीनी घोलने के लिए काँच की छड़ से जल को विलोडित कीजिए (चित्र 7.10, ग)।
- अनुमान लगाइए कि चिह्न 'ब' के संदर्भ में जल का स्तर बढ़ेगा या घटेगा।
- इस जलस्तर को पुन: 'स' द्वारा चिह्नित कीजिए (7.10 घ)।


आपको इन जलस्तरों में क्या अंतर दिखा?

आप देखेंगे कि प्रारंभ में जब जल में चीनी को मिलाया जाता है तो जल का स्तर बढ़ता है परंतु चीनी के घुलने के पश्चात जल का स्तर कुछ कम हो सकता है। चूँकि प्राप्त विलयन का

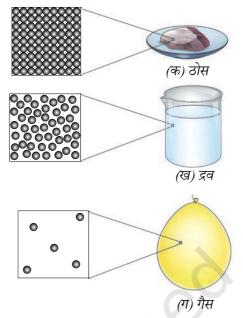
> आयतन जल और चीनी के आयतनों के योग से कम होता है अत: यह इंगित करता है कि जल के कणों के बीच कुछ रिक्त स्थान होते हैं। घुले हुए पदार्थ के कण इन्हीं स्थानों को घेरते हैं (चित्र 7.11)।

> क्रियाकलाप 7.7 को कई अन्य घुलनशील ठोस पदार्थों के साथ, जैसे— साधारण नमक या ग्लूकोस एंव अघुलनशील ठोस पदार्थों, जैसे— रेत और पत्थर के टुकड़ों के साथ दोहराइए।

> प्रत्येक स्थिति में आप क्या देखते हैं? क्या रेत के कण घुलते हैं? क्या रेत मिश्रित करने पर पात्र में जल का आयतन परिवर्तित होता है? यदि हाँ, तो क्यों?

चित्र 7.11 — जल में चीनी के कणों के वितरण की आवर्धित व्यवस्था का चित्र

चीनी और रेत दोनों ठोस हैं। चीनी जल में घुल जाती है जबकि रेत नहीं। ऐसा क्यों?


108

My Threw Day Man Start

रेत एक ठोस पदार्थ है जो जल में नहीं घुलती। जब इसे जल में डाला जाता है तो रेत के कण सतह पर नीचे बैठ जाते हैं और पात्र में कुछ स्थान घेर लेते हैं जिससे कुल आयतन में वृद्धि होती है।

आप ठोस पदार्थों में अंतराकणीय स्थानों के विषय में क्या सोचते हैं?

आपने पहले सीखा है कि ठोस पदार्थों के घटक कण परस्पर प्रबल आकर्षण बल के द्वारा जुड़े होते हैं। अत: ये कण एक स्थान से दूसरे स्थान तक गित नहीं करते हैं और सुसंकुलित होते हैं। यद्यपि सुसंकुलित होते हुए भी कणों के बीच में कुछ स्थान रिक्त होते हैं जैसािक चित्र 7.12 (क) में दर्शाया गया है। आप यह भी मान सकते हैं कि कणों के बीच के स्थानों में वायु भरी हुई है परंतु वास्तव में ऐसा नहीं है। उनके बीच में कुछ भी विद्यमान नहीं होता है। चित्र 7.12 में पदार्थ की तीनों अवस्थाओं में कणों के संकुलन तथा अंतराकणीय स्थानों को संक्षिप्त रूप में दर्शाया गया है।

चित्र 7.12— द्रव्य की तीन अवस्थाओं में अंतराकणीय स्थानों का आवर्धित व्यवस्थात्मक चित्र

एक सोपान ऊपर

प्रायः हम 'कण' शब्द का विभिन्न संदर्भों में प्रयोग करते हैं। प्रत्येक संदर्भ के अनुसार इस शब्द का अर्थ परिवर्तित हो जाता है। उदाहरण के लिए, जब हम वायु प्रदूषण की बात करते हैं तब निलंबित कणीय द्रव्य पद का उपयोग किया जाता है। यह पद वायु में निलंबित धूल के सूक्ष्म कणों को इंगित करता है और यह द्रव्य के उन घटक कणों को इंगित नहीं करता है जो धूल के कणों की तुलना में अत्यंत सूक्ष्म होते हैं। वास्तव में ये सूक्ष्म धूल कण भी घटक कणों (जैसे परमाणुओं और अणुओं) की अत्यधिक संख्या से मिलकर बने होते हैं।

7.4 पदार्थ की विभिन्न अवस्थाओं में कण किस प्रकार गति करते हैं?

आइए, अब हम पदार्थ की तीनों अवस्थाओं में कणों की गति के विषय में जानने का प्रयास करें।

क्रियाकलाप 7.8— आइए, प्रयोग करें

- जलयुक्त काँच का एक गिलास लीजिए और उसमें पोटैशियम परमैंगनेट के कुछ दाने डाल दीजिए।
- आप क्या देखते हैं?

स्रक्षा सर्वोपरि

पोटैशियम परमैंगनेट को अपने हाथों से न छुएँ। इसे डालने के लिए किसी चम्मच या स्पैचुला का उपयोग कीजिए।

चित्र 7.13— (क) गुलाबी रंग की फैलती हुई धारियाँ (ख) काँच के गिलास में एकसमान बैंगनी रंग

- आरंभ में आप देखेंगे कि दानों से गुलाबी रंग की कुछ धारियाँ फैल रही हैं (चित्र 7.13, क)।
- कुछ समय पश्चात संपूर्ण जल एकसमान गुलाबी रंग का हो जाएगा (चित्र 7.13, ख)।
- क्या आप जानते हैं कि ऐसा क्यों होता है?

सर्वप्रथम वे पोटैशियम परमैंगनेट के दाने से उसके कणों को खींचते हैं तत्पश्चात उन कणों से टकराकर उसे पूरे द्रव में फैला देते हैं। बहुत से पदार्थों में घटक कण प्रबलता से परस्पर जुड़े होते हैं और जल के कण उन्हें दूर करने में असमर्थ होते हैं जैसे रेत यह जल में अघुलनशील है।

वैज्ञानिक की भाँति सोचें

स्वयं प्रयास कीजिए!

- काँच के तीन स्वच्छ गिलास लीजिए।
- उनमें से एक गिलास में गरम जल डालिए, दूसरे में कक्ष के तापमान पर रखा हुआ जल डालिए और तीसरे में बर्फ के द्वारा ठंडा किया हुआ जल डालिए।
- इनमें से प्रत्येक में पोटैशियम परमैंगनेट का एक-एक छोटा दाना डालिए।
- इन्हें ध्यान से देखिए और तुलना कीजिए। आप क्या देखते हैं?

कक्ष के तापमान पर रखे जल की तुलना में गरम जल में जल के कण अधिक तीव्रता से गति करते हैं तथा ठंडे जल में धीरे गति करते हैं। इसके परिणामस्वरूप गरम जल में पोटैशियम परमैंगनेट अधिक तीव्रता से फैलता है, कक्ष के तापमान वाले जल में कम तीव्रता से और हिमशीतित या बर्फ के द्वारा ठंडे किए गए जल में सबसे धीरे फैलता है। अतः जब ऊष्मा प्रदान की जाती है तो कणों की गति में वृद्धि हो जाती है।

चित्र के आरेखन द्वारा इसे दर्शाने का प्रयास कीजिए।

गैस के जिन कणों को हम नग्न आँखों से नहीं देख सकते हैं उनकी गति को हम कैसे दर्शा सकते हैं?

कियाकलाप 7.9— आइए, ज्ञात करें

- कक्ष के एक कोने में एक अगरबत्ती जलाइए (चित्र 7.14)।
- कुछ क्षणों तक प्रतीक्षा कीजिए और अवलोकन कीजिए।
- क्या आप दूर से इसकी सुगंध का अनुभव करते हैं?

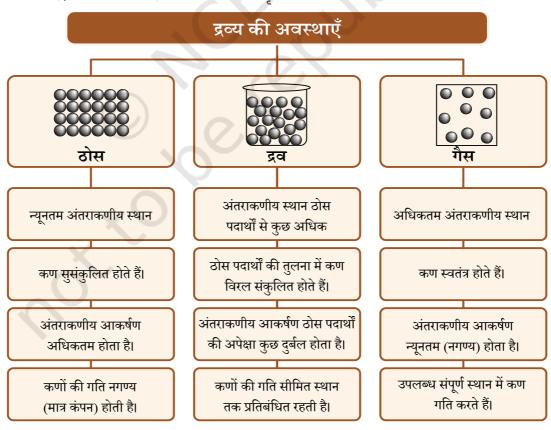
चित्र 7.14 — अगरबत्ती का जलना

जब अगरबत्ती को कक्ष के किसी कोने में जलाया जाता है तब प्रारंभ में सुगंध केवल अगरबत्ती के आस-पास ही अनुभव की जा सकती है। कुछ समय पश्चात आप सुगंध को पूरे कक्ष में इसकी सुगंध का अनुभव कर सकते हैं। ऐसा इसलिए होता है क्योंकि कण पूरे कक्ष में फैल कर कक्ष को सुगंधित कर देते हैं। यह दर्शाता है कि वायु के कण निरंतर गित कर रहे हैं। वायु के कण सुगंध के कणों से टकराते हैं और उन्हें कक्ष में चारों ओर फैलने में सहायता करते हैं।

क्या आप दैनिक जीवन से संबंधित ऐसी अन्य परिस्थितियाँ साझा कर सकते हैं जिनमें आपने किसी गैस के कणों की गति का अनुभव किया हो?

क्या आपके संज्ञान में है...

चित्र 7.15 – साबनु के कण सफाई में सहायता करते हैं।


अनेक दैनिक प्रक्रियाओं में द्रव्य की कणीय प्रकृति अत्यंत महत्वपूर्ण भूमिका निभाती है। उदाहरण के लिए जब हम साबुन के उपयोग द्वारा तेल के धब्बे वाले कपड़ों को धोते हैं तब साबुन के अनेक कण वस्त्र पर तेल के कणों को चारों ओर से घेर लेते हैं। साबुन के कण का एक सिरा तेल के कण के साथ जुड़ जाता है और दूसरा सिरा जल के साथ जुड़ जाता है। इससे तेल को बाहर निकालने में सहायता मिलती है और कपड़े साफ हो जाते हैं (चित्र 7.15)।

इस अध्याय से हमारी सीख के आधार पर हम यह कह सकते हैं कि द्रव्य सूक्ष्म कणों से बना होता है। ये सूक्ष्म कण आकर्षण बल के द्वारा परस्पर बँधे होते हैं। कणों के बीच आकर्षण बल की प्रबलता उनके बीच की दूरी पर निर्भर करती है और यह दूरी उनकी ऊष्मीय ऊर्जा पर निर्भर करती है। अतः यह कणों की ऊष्मीय ऊर्जा है जो द्रव्य की भौतिक अवस्था को निर्धारित करती है। ठोस अवस्था में कणों की ऊष्मीय ऊर्जा निम्न होती है जिससे वे एक-दूसरे के निकट ही रहते हैं एवं प्रबल अंतराकणीय आकर्षण बल का अनुभव करते हैं। ये बल उनकी गित को मात्र लघु कंपनों तक सीमित कर देते हैं।

किसी ठोस के गलनांक पर कणों के मध्य आकर्षण बलों को अप्रभावी करने के लिए ऊष्मीय ऊर्जा का उपयोग किया जाता है जिससे ठोस अवस्था द्रव अवस्था में परिवर्तित हो जाती है। इस अवस्था में कण अपनी निर्धारित स्थितियों से दूर गित कर सकते हैं। इससे अंतराकणीय दूरी में अल्प वृद्धि होती है परिणामस्वरूप आकर्षण बलों की प्रबलता इस सीमा तक कम हो जाती है कि कण इधर-उधर गित कर सकते हैं। गित के उपरांत भी वह एक सीमित स्थान में ही रहते हैं। गैसीय अवस्था में कणों के मध्य आकर्षण बलों को अप्रभावी करने के लिए पर्याप्त ऊर्जा होती है और वह सभी दिशाओं में स्वतंत्र रूप से गित कर सकते हैं। आप द्रव्य के इन घटक कणों के विषय में अपनी उच्च कक्षाओं में और सीखेंगे। आइए, इसे दोहराएँ!

द्रव्य की तीन अवस्थाओं की कणीय प्रकृति—

SLA SIMPLEMENT IN

स्मरणीय बिंद्

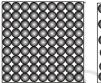
- द्रव्यों का निर्माण अत्यंत सूक्ष्म कणों द्वारा होता है।
- कण परस्पर अंतराकणीय आकर्षण बलों द्वारा जुड़े रहते हैं।
- अंतराकणीय आकर्षण ठोस पदार्थों में प्रबलतम, द्रवों में कुछ दुर्बल और गैसों में दुर्बलतम होते हैं।
- ठोस पदार्थों में प्रबल अंतराकणीय आकर्षण न्यूनतम अंतराकणीय स्थान और घटक कणों की कोई स्वतंत्र गति न होने के कारण उनकी आकृति और आकार निश्चित होता है।
- द्रवों में अंतराकणीय आकर्षण ठोस पदार्थों की तुलना में थोड़े दुर्बल होते हैं जिसके कारण कण एक सीमित स्थान के भीतर गित कर सकते हैं एवं इनमें कुछ अधिक अंतराकणीय स्थान उपलब्ध होता है। अतः द्रवों का आयतन निश्चित होता है परंतु इनकी कोई निश्चित आकृति नहीं होती है।
- गैसों में अंतराकणीय आकर्षण नगण्य होता है जिससे उनके कण एक स्थान से दूसरे स्थान तक गित करने हेतु पूर्णतः स्वतंत्र होते हैं। इसके फलस्वरूप इनमें अंतरकणीय स्थान अधिकतम होता है। अत: गैसों की एक निश्चित आकृति और निश्चित आयतन नहीं होता है।

जिज्ञासा बनाए रखें

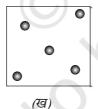
1.	सही विकल्प चुनिए—		
	ठोस पदार्थों और द्रवों में मूल अंतर यह है कि	घटक	कण

- (क) ठोस पदार्थों में सुसंकुलित होते हैं जबिक द्रवों में स्थिर होते हैं।
- (ख) ठोस पदार्थों में एक दूसरे से अधिक दूर होते हैं और द्रवों में उनकी नियत स्थिति होती है।
- (ग) ठोस पदार्थों में सदैव गति करते रहते हैं और द्रवों में उनकी नियत स्थिति होती है।
- (घ) ठोस पदार्थों में सुसंकुलित होते हैं और द्रवों में एक स्थान से दूसरे स्थान तक गति करते हैं।

2.	निम्नलिखित में से कौन-से कथन सत्य हैं? असत्य कथनों को सत्य कथन के रूप में लिखिए।		
	(क) बर्फ का जल में पिघलना किसी ठोस का द्रव में रूपांतरण का एक उदाहरण है।	[]
	(ख) गलन प्रक्रिया में रूपांतरण के समय अंतराकणीय आकर्षणों में कमी होती है।	[]
	(ग) ठोस पदार्थों की एक निश्चित आकृति और निश्चित आयतन होता है।	[]
	(घ) ठोस पदार्थों में अंतराकणीय अन्योन्य क्रियाएँ अति प्रबल होती हैं और अंतराकणीय		


अ	मा तक क अपन	। आवगम व	n आवार पर	. कुछ प्रश्ना का
नि	र्माण कीजिए			
••••				
••••				
••••				
••••				

स्थान अति सूक्ष्म होते हैं।



- (ङ) जब हम कक्ष के किसी कोने में कपूर को गरम करते हैं तो उसकी सुगंध कक्ष के सभी कोनों में पहुँच जाती है।
- (च) गरम करने पर हम कपूर को ऊर्जा दे रहे हैं और यह ऊर्जा गंध के रूप में मुक्त होती है।
- 3. सत्यता सिहत सही उत्तर का चयन कीजिए।
 यदि हम किसी कुर्सी से सभी घटक कण हटा पाते तो क्या होता?
 - (क) कुछ भी नहीं बदलता
 - (ख) कणों की हानि के कारण कुर्सी का भार कम हो जाता
 - (ग) कुर्सी का कुछ भी नहीं बचता
- 4. गैसें सरलतापूर्वक क्यों मिश्रित हो जाती हैं जबिक ठोस पदार्थ मिश्रित नहीं होते। ऐसा क्यों?
- 5. जब काँच के गिलास में रखा दूध मेज पर छलक जाता है तो वह बहता है और फैल जाता है परंतु काँच के गिलास की आकृति वही रहती है। इस कथन को सत्यापित कीजिए।
- 6. जब बर्फ पिघलती है और वह जल वाष्प में रूपांतरित होती है तो कणों की व्यवस्था में होने वाले परिवर्तनों को चित्र द्वारा निरूपित कीजिए।
- 7. निम्नलिखित में उपस्थित कणों को निरूपित करता हुआ चित्र आरेखित कीजिए—
 - (क) ऐलुमिनियम पर्णिका
 - (ख) ग्लिसरीन
 - (ग) मेथेन गैस

चित्र. 7.16

- 8. चित्र 7.16 (क) का अवलोकन कीजिए जिसमें एक ऐसी मोमबत्ती का चित्र है जिसे कुछ समय जलने के पश्चात बुझाया गया है। चित्र में मोम की विभिन्न अवस्थाओं को पहचानिए और चित्र 7.16 (ख) में दर्शाई गई कणों की व्यवस्था के साथ उनका मिलान कीजिए।
- 9. समुद्र के जल का स्वाद नमकीन क्यों होता है जबिक इसमें नमक दिखाई भी नहीं देता है? समझाइए।
- 10. चावल के दाने और चावल के आटे को जब विभिन्न पात्रों में रखा जाता है तो वे पात्र का आकार ले लेते हैं। क्या वे ठोस हैं या द्रव? व्याख्या कीजिए।

मेरे विचार से	ऐसा नहीं होना चाहिए
परंतु हमने सोचा	चाहिए संभवत:

अपने साथियों द्वारा निर्मित प्रश्नों पर चिंतन कीजिए और उत्तर
देने का प्रयास कीजिए
,

My Threword Mary Threword

खोजें, अभिकल्पित करें और चर्चा करें

- एक बोतल के संकीर्ण भाग (बोतल के मुँह) पर एक गुब्बारा लगाइए एवं बोतल को गरम जल में रख दीजिए। इसके साथ ही जाँच कीजिए कि क्या होगा?
- मिट्टी से निर्मित गोलियों, मोतियों इत्यादि के उपयोग से ठोस पदार्थों, द्रवों और गैसों के कणों को निरूपित करते हुए अंतराकणीय स्थान को दर्शाता हुआ एक सामान्य प्रतिमान (मॉडल) अभिकल्पित कीजिए और उसका सृजन कीजिए।
- विभिन्न तापमानों पर ठोस पदार्थों, द्रवों एवं गैसों के कणों का अभिनय कीजिए और कणों की गति दर्शाते हुए किसी नाटक या नृत्य को प्रस्तुत कीजिए।
- कक्षा में चर्चा कीजिए कि गैसें विस्तार कर सकती हैं और समस्त उपलब्ध स्थान को पूर्ण रूप से भर देती है। गैसों का यह गुणधर्म लाभदायक है या हानिकारक?

एक सोपान ऊपर

वे सूक्ष्म कण जो सभी द्रव्यों का निर्माण करते हैं, वे परमाणु और अणु हैं। उदाहरण के लिए लोहे का एक टुकड़ा लोहे के परमाणुओं से बना होता है और सोने का एक टुकड़ा सोने के परमाणुओं से बना होता है। अनेक तत्व, जैसे — हाइड्रोजन, ऑक्सीजन और सल्फर के परमाणु स्वतंत्र रूप से अस्तित्व में नहीं रह सकते हैं। ऐसी स्थिति में एक ही तत्व के परमाणु निश्चित संख्या में संयोजित होकर एक अणु बनाते हैं। उदाहरण के लिए हाइड्रोजन के दो परमाणु संयोजित होकर एक स्थायी कण हाइड्रोजन के अणु का निर्माण करते हैं। जल का एक अणु हाइड्रोजन के दो परमाणुओं और ऑक्सीजन के एक परमाणु से बना होता है। आप उच्च कक्षाओं में परमाणुओं और अणुओं के विषय में पढ़ेंगे।

